Testing of the U_R_RL model
by Evgenii Kovrigin, 06/23/2011
Contents
close all clear all
Here you will find all figures
figures_folder='Testing_figures';
Set some meaningful parameters
Rtotal=1e-3; % Receptor concentration, M LRratio_array=[0 : 0.02 : 1.45]; % Array of L/R K_A_1=1e6; % Binding affinity constant K_B_1=4; % Isomerization constant K_B_2=0.5; % Isomerization constant
Dependent constant:
K_A_2 = (K_A_1*K_B_2)/K_B_1 % eq 3.2
K_A_2 = 125000
Set appropriate options for the model (see model file for details)
model_numeric_solver='analytical' ; model_numeric_options='none';
Compute arrays for populations and plot
concentrations_array=[]; for counter=1:length(LRratio_array) % compute [concentrations species_names] = equilibrium_thermodynamic_equations.U_R_RL_model(... Rtotal, LRratio_array(counter), K_A_1, K_B_1, K_B_2,... model_numeric_solver, model_numeric_options); % collect concentrations_array = [concentrations_array ; concentrations]; end
Plot
Figure_title= 'U-R-RL model'; X_range=[0 max(LRratio_array)+0.1 ]; % extend X just a bit past last point Y_range=[ 0 Rtotal]; % keep automatic scaling for Y % display figure figure_handle=equilibrium_thermodynamic_equations.plot_populations(... LRratio_array, concentrations_array, species_names, Figure_title, X_range, Y_range); % save it results_output.output_figure(figure_handle, figures_folder, 'Concentrations_plot');
Observations
The result is exactly what we expect from this model. The receptor is split between two forms at a constant ratio. Similarly, the bound complex is split between two forms at a constant ratio.s, RL and RL*
Conclusion
The model equilibrium_thermodynamic_equations.U_R_RL_model() works well.