U-5R-RL

Derivation of differential equations describing evolution of spin concentrations

 

image

 

NOTE: This document is based on  IDAP/Mathematical_models/NMR_line_shape_models/2D/U_5R_RL/U_5R_RL.mn

 

NOTE 2: The model with one isomerization, U-1R-RL, is not identical to U-R-RL because the latter contains a transition connecting R* and RL* directly, which is absent from U-nR-RL family models!

 

Strategy:

I will develop kinetic matrices for  five cases to have from one to five isomers of R. I will explicitly use all rate constants of similar transitions to be able to simplify in the next steps by setting them to one value.

 

NOTE: The order of species in this model will be: R, RL, R*, R**,  R***, R****, R*****, RL*  to simplify expansion of the model. It is different from U-R model in the existing IDAP code!

 

Accurate extraction of K matrix:

Workflow for accurate extraction of the K matrix

- prepare empty matrix

- copy-paste one equation at a time to MATLAB script

- cut-and-paste terms (together with signs and coefficients) into MuPad matrix. NOTE: It is more convenient to do arrange terms with increasing coefficients in MATLAB, place commas after  groups with the same coefficient (and zeros for the absent coefficients) and only then paste into the MuPad.

- execute cell after every equation to see how matrix is filled

- delete coefficients (keep negative signs!!!)

 

 

 

Contents

 

Definitions of transitions and strategy

 

 

Reaction, partial conversion, and net rates

 

 

Expression in terms of spin (monomer) concentrations

 

 

 

 

Derivation of K matrix for U-R-RL mechanism

   K matrix for U-R-RL model with new species order

 

 

 

Derivation for K matrix of U-2R-RL mechanism

Final expression for U-2R-RL kinetic matrix

 

 

 

 

Derivation of K matrix for U-3R-RL mechanism

- Final expression for U-3R-RL kinetic matrix

 

 

 

Derivation of K matrix for U-4R-RL mechanism

- Final expression for U-4R-RL kinetic matrix

 

 

 

Derivation of K matrix for U-5R-RL mechanism

- Final expression for U-5R-RL kinetic matrix

 

 

 

 

Conclusions

 

 

 

 

Back to Contents

 

clean up workspace

reset()

 

 

 


  Definition of transitions and strategy

 

 

Write properly balanced reactions equations for all transitions in the mechanism:

 

Binding reaction, transition A:   

R+L<=>RL

Constants: k_1_A (forward), k_2_A (reverse).

 

 

Isomerization of R to R-starred species: transitions B1

 

R <=> R*

Constants: k_1_B_1_s_1 (forward), k_2_B_1_s_1 (reverse).

 

R <=> R**

Constants: k_1_B_1_s_2 (forward), k_2_B_1_s_2 (reverse).

 

R <=> R***

Constants: k_1_B_1_s_3 (forward), k_2_B_1_s_3 (reverse).

 

R <=> R****

Constants: k_1_B_1_s_4 (forward), k_2_B_1_s_4 (reverse).

 

R <=> R*****

Constants: k_1_B_1_s_5 (forward), k_2_B_1_s_5 (reverse).

 

 

 

Interconversion of R-starred isomers: transitions C

 

-- R* --

R* <=> R**

Constants: k_1_C_s_1_2 (forward), k_2_C_s_1_2 (reverse).

 

R* <=> R***

Constants: k_1_C_s_1_3 (forward), k_2_C_s_1_3 (reverse).

 

R* <=> R****

Constants: k_1_C_s_1_4 (forward), k_2_C_s_1_4 (reverse).

 

R* <=> R*****

Constants: k_1_C_s_1_5 (forward), k_2_C_s_1_5 (reverse).

 

 

-- R** --

R** <=> R***

Constants: k_1_C_s_2_3 (forward), k_2_C_s_2_3 (reverse).

 

R** <=> R****

Constants: k_1_C_s_2_4 (forward), k_2_C_s_2_4 (reverse).

 

R** <=> R*****

Constants: k_1_C_s_2_5 (forward), k_2_C_s_2_5 (reverse).

 

 

-- R*** --

R*** <=> R****

Constants: k_1_C_s_3_4 (forward), k_2_C_s_3_4 (reverse).

 

R*** <=> R*****

Constants: k_1_C_s_3_5 (forward), k_2_C_s_3_5 (reverse).

 

 

-- R**** --

R****<=> R*****

Constants: k_1_C_s_4_5 (forward), k_2_C_s_4_5 (reverse).

 

 

 

Isomerization of RL to RL-starred species: transition B2

 

RL <=> R*L

Constants: k_1_B_2 (forward), k_2_B_2 (reverse).

 

 

Write reaction rates

Here, we distinguish reaction rate (elementary reaction acts per unit time; denote as "Rate_reaction-label") and conversion rates (number of moles of specific species consumed/produced per unit time, dc/dt). Conversion rates, dc/dt, for species are related to reaction rates, Rate, through molecularity coefficients.

 

We also distinguish here partial conversion rates from net (overall) conversion rates. The net conversion rate is the actual rate of change in measured concentration of the species due to all transitions this species is involved with (denote at Rate_reaction-label_N). Partial conversion rate is the conversion rate of the species along a specific branch of the reaction mechanism (denote 'dC-component-dt-reaction-label'). Summation of the partial conversion rates of the species gives the net conversion rate.

 

NOTE: In this mechanism, all transition involve only one molecules of species of each kind, therefore all  partial conversion rates are equal to reaction rates. This is reflected by setting 'molecularity' to 1 for all transitions. The molecularity sign also indicates whether the species is created or destroyed in this transition.

 

Strategy:

We need equations for the net conversion rates for each species. For this purpose, we write partial conversion rates originating from every individual (forward or reverse) process. To obtain the partial conversion rate for a process, we use the reaction rate equation times molecularity of the process in terms of this particular species.

 

 

 

 

Back to Contents

 

 

Reaction, partial conversion, and net rates

 

In the following subsections, I am developing equations to account for net rate of change of every particular species.

 

R derivation

                    -   Summary equations for R

 

 

RL derivation

                      -  Summary equation for RL

 

 

R* derivation

                      - Summary of equations for R*

 

R** derivation

                      -  Summary of equations for R**

 

R*** derivation

                        - Summary of equations for R***

 

R**** derivation

                            - Summary of equations for R****

 

R***** derivation

- Summary of equations for R*****

 

 

RL* derivation

- Summary of equations for RL*

 

 

Species: R

Equations group: 1 

 

 

R+L<=>RL

Constants: k_1_A (forward), k_2_A (reverse).

 

Equations subgroup: A

 

a forward reaction rate

eq1_A_1a:= Rate_1_A = k_1_A*R*L

Rate_1_A = L*R*k_1_A

a partial conversion rate of R in this transition

molecularity:=-1:
eq1_A_1b:= dcRdt_1_A = molecularity*Rate_1_A

dcRdt_1_A = -Rate_1_A

The final form

eq1_A_1c:= eq1_A_1b | eq1_A_1a

dcRdt_1_A = -L*R*k_1_A

 

 

a reverse reaction rate for the transition

eq1_A_2a:= Rate_2_A = k_2_A*RL

Rate_2_A = RL*k_2_A

a partial conversion rate of R in this transition

molecularity:=1:
eq1_A_2b:= dcRdt_2_A = molecularity*Rate_2_A

dcRdt_2_A = Rate_2_A

The final form

eq1_A_2c:= eq1_A_2b | eq1_A_2a

dcRdt_2_A = RL*k_2_A

 

 

R <=> R*

Constants: k_1_B_1_s_1 (forward), k_2_B_1_s_1 (reverse).

 

Equations subgroup: Bs1

 

a forward reaction rate  for the transition

eq1_Bs1_1a:= Rate_1_B_1_s_1 = k_1_B_1_s_1*R

Rate_1_B_1_s_1 = R*k_1_B_1_s_1

a partial conversion rate of R in this transition

molecularity:=-1:
eq1_Bs1_1b:= dcRdt_1_B_1_s_1 = molecularity*Rate_1_B_1_s_1

dcRdt_1_B_1_s_1 = -Rate_1_B_1_s_1

The final form

eq1_Bs1_1c:= eq1_Bs1_1b | eq1_Bs1_1a

dcRdt_1_B_1_s_1 = -R*k_1_B_1_s_1

 

 

a reverse reaction rate for the transition

eq1_Bs1_2a:= Rate_2_B_1_s_1 = k_2_B_1_s_1*R_s_1

Rate_2_B_1_s_1 = R_s_1*k_2_B_1_s_1

a partial conversion rate of R in this transition

molecularity:=1:
eq1_Bs1_2b:= dcRdt_2_B_1_s_1 = molecularity*Rate_2_B_1_s_1

dcRdt_2_B_1_s_1 = Rate_2_B_1_s_1

The final form

eq1_Bs1_2c:= eq1_Bs1_2b | eq1_Bs1_2a

dcRdt_2_B_1_s_1 = R_s_1*k_2_B_1_s_1

 

 

 

R <=> R**

Constants: k_1_B_1_s2 (forward), k_2_B_1_s2 (reverse).

 

Equations subgroup: Bs2

 

a forward reaction rate  for the transition

eq1_Bs2_1a:= Rate_1_B_1_s_2 = k_1_B_1_s_2*R

Rate_1_B_1_s_2 = R*k_1_B_1_s_2

a partial conversion rate of R in this transition

molecularity:=-1:
eq1_Bs2_1b:= dcRdt_1_B_1_s_2 = molecularity*Rate_1_B_1_s_2

dcRdt_1_B_1_s_2 = -Rate_1_B_1_s_2

The final form

eq1_Bs2_1c:= eq1_Bs2_1b | eq1_Bs2_1a

dcRdt_1_B_1_s_2 = -R*k_1_B_1_s_2

 

 

a reverse reaction rate for the transition

eq1_Bs2_2a:= Rate_2_B_1_s_2 = k_2_B_1_s_2*R_s_2

Rate_2_B_1_s_2 = R_s_2*k_2_B_1_s_2

a partial conversion rate of R in this transition

molecularity:=1:
eq1_Bs2_2b:= dcRdt_2_B_1_s_2 = molecularity*Rate_2_B_1_s_2

dcRdt_2_B_1_s_2 = Rate_2_B_1_s_2

The final form

eq1_Bs2_2c:= eq1_Bs2_2b | eq1_Bs2_2a

dcRdt_2_B_1_s_2 = R_s_2*k_2_B_1_s_2

 

 

 

 

R <=> R***

Constants: k_1_B_1_s3 (forward), k_2_B_1_s3 (reverse).

 

Equations subgroup: Bs3

 

a forward reaction rate  for the transition

eq1_Bs3_1a:= Rate_1_B_1_s_3 = k_1_B_1_s_3*R

Rate_1_B_1_s_3 = R*k_1_B_1_s_3

a partial conversion rate of R in this transition

molecularity:=-1:
eq1_Bs3_1b:= dcRdt_1_B_1_s_3 = molecularity*Rate_1_B_1_s_3

dcRdt_1_B_1_s_3 = -Rate_1_B_1_s_3

The final form

eq1_Bs3_1c:= eq1_Bs3_1b | eq1_Bs3_1a

dcRdt_1_B_1_s_3 = -R*k_1_B_1_s_3

 

 

a reverse reaction rate for the transition

eq1_Bs3_2a:= Rate_2_B_1_s_3 = k_2_B_1_s_3*R_s_3

Rate_2_B_1_s_3 = R_s_3*k_2_B_1_s_3

a partial conversion rate of R in this transition

molecularity:=1:
eq1_Bs3_2b:= dcRdt_2_B_1_s_3 = molecularity*Rate_2_B_1_s_3

dcRdt_2_B_1_s_3 = Rate_2_B_1_s_3

The final form

eq1_Bs3_2c:= eq1_Bs3_2b | eq1_Bs3_2a

dcRdt_2_B_1_s_3 = R_s_3*k_2_B_1_s_3

 

 

 

 

 

 

R <=> R****

Constants: k_1_B_1_s4 (forward), k_2_B_1_s4 (reverse).

 

Equations subgroup: Bs4

 

a forward reaction rate  for the transition

eq1_Bs4_1a:= Rate_1_B_1_s_4 = k_1_B_1_s_4*R

Rate_1_B_1_s_4 = R*k_1_B_1_s_4

a partial conversion rate of R in this transition

molecularity:=-1:
eq1_Bs4_1b:= dcRdt_1_B_1_s_4 = molecularity*Rate_1_B_1_s_4

dcRdt_1_B_1_s_4 = -Rate_1_B_1_s_4

The final form

eq1_Bs4_1c:= eq1_Bs4_1b | eq1_Bs4_1a

dcRdt_1_B_1_s_4 = -R*k_1_B_1_s_4

 

 

a reverse reaction rate for the transition

eq1_Bs4_2a:= Rate_2_B_1_s_4 = k_2_B_1_s_4*R_s_4

Rate_2_B_1_s_4 = R_s_4*k_2_B_1_s_4

a partial conversion rate of R in this transition

molecularity:=1:
eq1_Bs4_2b:= dcRdt_2_B_1_s_4 = molecularity*Rate_2_B_1_s_4

dcRdt_2_B_1_s_4 = Rate_2_B_1_s_4

The final form

eq1_Bs4_2c:= eq1_Bs4_2b | eq1_Bs4_2a

dcRdt_2_B_1_s_4 = R_s_4*k_2_B_1_s_4

 

 

 

 

 

R <=> R*****

Constants: k_1_B_1_s5 (forward), k_2_B_1_s5 (reverse).

 

Equations subgroup: Bs5

 

a forward reaction rate  for the transition

eq1_Bs5_1a:= Rate_1_B_1_s_5 = k_1_B_1_s_5*R

Rate_1_B_1_s_5 = R*k_1_B_1_s_5

a partial conversion rate of R in this transition

molecularity:=-1:
eq1_Bs5_1b:= dcRdt_1_B_1_s_5 = molecularity*Rate_1_B_1_s_5

dcRdt_1_B_1_s_5 = -Rate_1_B_1_s_5

The final form

eq1_Bs5_1c:= eq1_Bs5_1b | eq1_Bs5_1a

dcRdt_1_B_1_s_5 = -R*k_1_B_1_s_5

 

 

a reverse reaction rate for the transition

eq1_Bs5_2a:= Rate_2_B_1_s_5 = k_2_B_1_s_5*R_s_5

Rate_2_B_1_s_5 = R_s_5*k_2_B_1_s_5

a partial conversion rate of R in this transition

molecularity:=1:
eq1_Bs5_2b:= dcRdt_2_B_1_s_5 = molecularity*Rate_2_B_1_s_5

dcRdt_2_B_1_s_5 = Rate_2_B_1_s_5

The final form

eq1_Bs5_2c:= eq1_Bs5_2b | eq1_Bs5_2a

dcRdt_2_B_1_s_5 = R_s_5*k_2_B_1_s_5

 

 

 

 

Summary of partial conversion rates for the species

eq1_A_1c; eq1_A_2c;

dcRdt_1_A = -L*R*k_1_A
dcRdt_2_A = RL*k_2_A

eq1_Bs1_1c;  eq1_Bs1_2c;
eq1_Bs2_1c;  eq1_Bs2_2c;
eq1_Bs3_1c;  eq1_Bs3_2c;
eq1_Bs4_1c;  eq1_Bs4_2c;
eq1_Bs5_1c;  eq1_Bs5_2c;

dcRdt_1_B_1_s_1 = -R*k_1_B_1_s_1
dcRdt_2_B_1_s_1 = R_s_1*k_2_B_1_s_1
dcRdt_1_B_1_s_2 = -R*k_1_B_1_s_2
dcRdt_2_B_1_s_2 = R_s_2*k_2_B_1_s_2
dcRdt_1_B_1_s_3 = -R*k_1_B_1_s_3
dcRdt_2_B_1_s_3 = R_s_3*k_2_B_1_s_3
dcRdt_1_B_1_s_4 = -R*k_1_B_1_s_4
dcRdt_2_B_1_s_4 = R_s_4*k_2_B_1_s_4
dcRdt_1_B_1_s_5 = -R*k_1_B_1_s_5
dcRdt_2_B_1_s_5 = R_s_5*k_2_B_1_s_5

 

Net conversion rate for the species

I will create equations for all five versions of the mechanism.

 

U-R-RL

dcRdt_N = dcRdt_1_A + dcRdt_2_A + dcRdt_1_B_1_s_1 + dcRdt_2_B_1_s_1

dcRdt_N = dcRdt_1_A + dcRdt_2_A + dcRdt_1_B_1_s_1 + dcRdt_2_B_1_s_1

Substitute

eq1_R_N__U_R_RL:= % | eq1_A_1c | eq1_A_2c | \
eq1_Bs1_1c |   eq1_Bs1_2c | \
eq1_Bs2_1c |   eq1_Bs2_2c | \
eq1_Bs3_1c |   eq1_Bs3_2c | \
eq1_Bs4_1c |   eq1_Bs4_2c | \
eq1_Bs5_1c |   eq1_Bs5_2c;

dcRdt_N = RL*k_2_A - R*k_1_B_1_s_1 + R_s_1*k_2_B_1_s_1 - L*R*k_1_A

 

 

 

U-2R-RL

dcRdt_N = dcRdt_1_A + dcRdt_2_A + dcRdt_1_B_1_s_1 + dcRdt_2_B_1_s_1  + dcRdt_1_B_1_s_2 + dcRdt_2_B_1_s_2

dcRdt_N = dcRdt_1_A + dcRdt_2_A + dcRdt_1_B_1_s_1 + dcRdt_1_B_1_s_2 + dcRdt_2_B_1_s_1 + dcRdt_2_B_1_s_2

Substitute

eq1_R_N__U_2R_RL:= % | eq1_A_1c | eq1_A_2c | \
eq1_Bs1_1c |   eq1_Bs1_2c | \
eq1_Bs2_1c |   eq1_Bs2_2c | \
eq1_Bs3_1c |   eq1_Bs3_2c | \
eq1_Bs4_1c |   eq1_Bs4_2c | \
eq1_Bs5_1c |   eq1_Bs5_2c;

dcRdt_N = RL*k_2_A - R*k_1_B_1_s_2 - R*k_1_B_1_s_1 + R_s_1*k_2_B_1_s_1 + R_s_2*k_2_B_1_s_2 - L*R*k_1_A

 

 

U-3R-RL

dcRdt_N = dcRdt_1_A + dcRdt_2_A + dcRdt_1_B_1_s_1 + dcRdt_2_B_1_s_1  + dcRdt_1_B_1_s_2 + dcRdt_2_B_1_s_2 \
+ dcRdt_1_B_1_s_3 + dcRdt_2_B_1_s_3

dcRdt_N = dcRdt_1_A + dcRdt_2_A + dcRdt_1_B_1_s_1 + dcRdt_1_B_1_s_2 + dcRdt_1_B_1_s_3 + dcRdt_2_B_1_s_1 + dcRdt_2_B_1_s_2 + dcRdt_2_B_1_s_3

Substitute

eq1_R_N__U_3R_RL:= % | eq1_A_1c | eq1_A_2c | \
eq1_Bs1_1c |   eq1_Bs1_2c | \
eq1_Bs2_1c |   eq1_Bs2_2c | \
eq1_Bs3_1c |   eq1_Bs3_2c | \
eq1_Bs4_1c |   eq1_Bs4_2c | \
eq1_Bs5_1c |   eq1_Bs5_2c;

dcRdt_N = RL*k_2_A - R*k_1_B_1_s_2 - R*k_1_B_1_s_3 - R*k_1_B_1_s_1 + R_s_1*k_2_B_1_s_1 + R_s_2*k_2_B_1_s_2 + R_s_3*k_2_B_1_s_3 - L*R*k_1_A

 

 

U-4R-RL

dcRdt_N = dcRdt_1_A + dcRdt_2_A + dcRdt_1_B_1_s_1 + dcRdt_2_B_1_s_1  + dcRdt_1_B_1_s_2 + dcRdt_2_B_1_s_2 \
+ dcRdt_1_B_1_s_3 + dcRdt_2_B_1_s_3  + dcRdt_1_B_1_s_4 + dcRdt_2_B_1_s_4

dcRdt_N = dcRdt_1_A + dcRdt_2_A + dcRdt_1_B_1_s_1 + dcRdt_1_B_1_s_2 + dcRdt_1_B_1_s_3 + dcRdt_1_B_1_s_4 + dcRdt_2_B_1_s_1 + dcRdt_2_B_1_s_2 + dcRdt_2_B_1_s_3 + dcRdt_2_B_1_s_4

Substitute

eq1_R_N__U_4R_RL:= % | eq1_A_1c | eq1_A_2c | \
eq1_Bs1_1c |   eq1_Bs1_2c | \
eq1_Bs2_1c |   eq1_Bs2_2c | \
eq1_Bs3_1c |   eq1_Bs3_2c | \
eq1_Bs4_1c |   eq1_Bs4_2c | \
eq1_Bs5_1c |   eq1_Bs5_2c;

dcRdt_N = RL*k_2_A - R*k_1_B_1_s_2 - R*k_1_B_1_s_3 - R*k_1_B_1_s_4 - R*k_1_B_1_s_1 + R_s_1*k_2_B_1_s_1 + R_s_2*k_2_B_1_s_2 + R_s_3*k_2_B_1_s_3 + R_s_4*k_2_B_1_s_4 - L*R*k_1_A

 

 

U-5R-RL

dcRdt_N = dcRdt_1_A + dcRdt_2_A + dcRdt_1_B_1_s_1 + dcRdt_2_B_1_s_1  + dcRdt_1_B_1_s_2 + dcRdt_2_B_1_s_2 \
+ dcRdt_1_B_1_s_3 + dcRdt_2_B_1_s_3  + dcRdt_1_B_1_s_4 + dcRdt_2_B_1_s_4  + dcRdt_1_B_1_s_5 + dcRdt_2_B_1_s_5

dcRdt_N = dcRdt_1_A + dcRdt_2_A + dcRdt_1_B_1_s_1 + dcRdt_1_B_1_s_2 + dcRdt_1_B_1_s_3 + dcRdt_1_B_1_s_4 + dcRdt_1_B_1_s_5 + dcRdt_2_B_1_s_1 + dcRdt_2_B_1_s_2 + dcRdt_2_B_1_s_3 + dcRdt_2_B_1_s_4 + dcRdt_2_B_1_s_5

Substitute

eq1_R_N__U_5R_RL:= % | eq1_A_1c | eq1_A_2c | \
eq1_Bs1_1c |   eq1_Bs1_2c | \
eq1_Bs2_1c |   eq1_Bs2_2c | \
eq1_Bs3_1c |   eq1_Bs3_2c | \
eq1_Bs4_1c |   eq1_Bs4_2c | \
eq1_Bs5_1c |   eq1_Bs5_2c;

dcRdt_N = RL*k_2_A - R*k_1_B_1_s_2 - R*k_1_B_1_s_3 - R*k_1_B_1_s_4 - R*k_1_B_1_s_5 - R*k_1_B_1_s_1 + R_s_1*k_2_B_1_s_1 + R_s_2*k_2_B_1_s_2 + R_s_3*k_2_B_1_s_3 + R_s_4*k_2_B_1_s_4 + R_s_5*k_2_B_1_s_5 - L*R*k_1_A

 

 

Summary equations for R

eq1_R_N__U_R_RL

dcRdt_N = RL*k_2_A - R*k_1_B_1_s_1 + R_s_1*k_2_B_1_s_1 - L*R*k_1_A

eq1_R_N__U_2R_RL

dcRdt_N = RL*k_2_A - R*k_1_B_1_s_2 - R*k_1_B_1_s_1 + R_s_1*k_2_B_1_s_1 + R_s_2*k_2_B_1_s_2 - L*R*k_1_A

eq1_R_N__U_3R_RL

dcRdt_N = RL*k_2_A - R*k_1_B_1_s_2 - R*k_1_B_1_s_3 - R*k_1_B_1_s_1 + R_s_1*k_2_B_1_s_1 + R_s_2*k_2_B_1_s_2 + R_s_3*k_2_B_1_s_3 - L*R*k_1_A

eq1_R_N__U_4R_RL

dcRdt_N = RL*k_2_A - R*k_1_B_1_s_2 - R*k_1_B_1_s_3 - R*k_1_B_1_s_4 - R*k_1_B_1_s_1 + R_s_1*k_2_B_1_s_1 + R_s_2*k_2_B_1_s_2 + R_s_3*k_2_B_1_s_3 + R_s_4*k_2_B_1_s_4 - L*R*k_1_A

eq1_R_N__U_5R_RL

dcRdt_N = RL*k_2_A - R*k_1_B_1_s_2 - R*k_1_B_1_s_3 - R*k_1_B_1_s_4 - R*k_1_B_1_s_5 - R*k_1_B_1_s_1 + R_s_1*k_2_B_1_s_1 + R_s_2*k_2_B_1_s_2 + R_s_3*k_2_B_1_s_3 + R_s_4*k_2_B_1_s_4 + R_s_5*k_2_B_1_s_5 - L*R*k_1_A

 

 

 

Back to  Equations for each species

 

 

 

 

 

 

Species: RL

Equations group: 2

 

 

R+L<=>RL

Constants: k_1_A (forward), k_2_A (reverse).

 

Equations subgroup: A

 

a forward reaction rate

eq1_A_1a

Rate_1_A = L*R*k_1_A

a partial conversion rate in this transition

molecularity:=1:
eq2_A_1b:= dcRLdt_1_A = molecularity*Rate_1_A

dcRLdt_1_A = Rate_1_A

The final form

eq2_A_1c:= eq2_A_1b | eq1_A_1a

dcRLdt_1_A = L*R*k_1_A

 

 

a reverse reaction rate for the transition

eq1_A_2a

Rate_2_A = RL*k_2_A

a partial conversion rate in this transition

molecularity:=-1:
eq2_A_2b:= dcRLdt_2_A = molecularity*Rate_2_A

dcRLdt_2_A = -Rate_2_A

The final form

eq2_A_2c:= eq2_A_2b | eq1_A_2a

dcRLdt_2_A = -RL*k_2_A

 

 

 

 

RL <=> RL*

Constants: k_1_B_2 (forward), k_2_B_2 (reverse).

 

Equations subgroup: B2

 

 

a forward reaction rate  for the transition

eq2_B2_1a:= Rate_1_B_2 = k_1_B_2*RL

Rate_1_B_2 = RL*k_1_B_2

a partial conversion rate of R in this transition

molecularity:=-1:
eq2_B2_1b:= dcRLdt_1_B_2 = molecularity*Rate_1_B_2

dcRLdt_1_B_2 = -Rate_1_B_2

The final form

eq2_B2_1c:= eq2_B2_1b | eq2_B2_1a

dcRLdt_1_B_2 = -RL*k_1_B_2

 

 

 

a reverse reaction rate for the transition

eq2_B2_2a:= Rate_2_B_2 = k_2_B_2*RL_s

Rate_2_B_2 = RL_s*k_2_B_2

a partial conversion rate of R in this transition

molecularity:=1:
eq2_B2_2b:= dcRLdt_2_B_2 = molecularity*Rate_2_B_2

dcRLdt_2_B_2 = Rate_2_B_2

The final form

eq2_B2_2c:= eq2_B2_2b | eq2_B2_2a

dcRLdt_2_B_2 = RL_s*k_2_B_2

 

 

 

 

Net conversion rate for the species

 

Same in all alternative mechanisms

dcRLdt_N = dcRLdt_1_A + dcRLdt_2_A + dcRLdt_1_B_2 +  dcRLdt_2_B_2

dcRLdt_N = dcRLdt_1_A + dcRLdt_2_A + dcRLdt_1_B_2 + dcRLdt_2_B_2

Substitute

eq2_RL_N:= % |  eq2_A_1c |  eq2_A_2c | eq2_B2_1c | eq2_B2_2c

dcRLdt_N = RL_s*k_2_B_2 - RL*k_1_B_2 - RL*k_2_A + L*R*k_1_A

 

 

Summary equation for RL

All versions of mechanism will have it the same

eq2_RL_N

dcRLdt_N = RL_s*k_2_B_2 - RL*k_1_B_2 - RL*k_2_A + L*R*k_1_A

 

 

 

Back to  Equations for each species

 

 

 

Species: R*

Equations group: 3

 

Consider all processes contributing or removing this species

 

R <=> R*

 

R* <=> R**

 

R* <=> R***

 

R* <=> R****

 

R* <=> R*****

 

-------------------------

 

 

 

R <=> R*

 

Equations subgroup: B1

 

a forward reaction rate  for the transition

eq1_Bs1_1a

Rate_1_B_1_s_1 = R*k_1_B_1_s_1

a partial conversion rate of R* in this transition

molecularity:=1:
eq3_Bs1_1b:= dcRs1dt_1_B_1_s_1 = molecularity*Rate_1_B_1_s_1

dcRs1dt_1_B_1_s_1 = Rate_1_B_1_s_1

The final form

eq3_Bs1_1c:= eq3_Bs1_1b | eq1_Bs1_1a

dcRs1dt_1_B_1_s_1 = R*k_1_B_1_s_1

 

 

a reverse reaction rate for the transition

eq1_Bs1_2a

Rate_2_B_1_s_1 = R_s_1*k_2_B_1_s_1

a partial conversion rate of R* in this transition

molecularity:=-1:
eq3_Bs1_2b:= dcRs1dt_2_B_1_s_1 = molecularity*Rate_2_B_1_s_1

dcRs1dt_2_B_1_s_1 = -Rate_2_B_1_s_1

The final form

eq3_Bs1_2c:= eq3_Bs1_2b | eq1_Bs1_2a

dcRs1dt_2_B_1_s_1 = -R_s_1*k_2_B_1_s_1

 

 

 

Equations subgroup: C

 

R* <=> R**

 

a forward reaction rate  for the transition

eq3_Cs12_1a:= Rate_1_C_s_1_2 = R_s_1 * k_1_C_s_1_2

Rate_1_C_s_1_2 = R_s_1*k_1_C_s_1_2

a partial conversion rate of R* in this transition

molecularity:=-1:
eq3_Cs12_1b:= dcRs1dt_1_C_s_1_2 = molecularity*Rate_1_C_s_1_2

dcRs1dt_1_C_s_1_2 = -Rate_1_C_s_1_2

The final form

eq3_Cs12_1c:= eq3_Cs12_1b | eq3_Cs12_1a

dcRs1dt_1_C_s_1_2 = -R_s_1*k_1_C_s_1_2

 

 

a reverse reaction rate for the transition

eq3_Cs12_2a:= Rate_2_C_s_1_2 = R_s_2 * k_2_C_s_1_2

Rate_2_C_s_1_2 = R_s_2*k_2_C_s_1_2

a partial conversion rate of R* in this transition

molecularity:=1:
eq3_Cs12_2b:= dcRs1dt_2_C_s_1_2 = molecularity*Rate_2_C_s_1_2

dcRs1dt_2_C_s_1_2 = Rate_2_C_s_1_2

The final form

eq3_Cs12_2c:= eq3_Cs12_2b | eq3_Cs12_2a

dcRs1dt_2_C_s_1_2 = R_s_2*k_2_C_s_1_2

 

 

 

R* <=> R***

 

a forward reaction rate  for the transition

eq3_Cs13_1a:= Rate_1_C_s_1_3 = R_s_1 * k_1_C_s_1_3

Rate_1_C_s_1_3 = R_s_1*k_1_C_s_1_3

a partial conversion rate of R* in this transition

molecularity:=-1:
eq3_Cs13_1b:= dcRs1dt_1_C_s_1_3 = molecularity*Rate_1_C_s_1_3

dcRs1dt_1_C_s_1_3 = -Rate_1_C_s_1_3

The final form

eq3_Cs13_1c:= eq3_Cs13_1b | eq3_Cs13_1a

dcRs1dt_1_C_s_1_3 = -R_s_1*k_1_C_s_1_3

 

 

a reverse reaction rate for the transition

eq3_Cs13_2a:= Rate_2_C_s_1_3 = R_s_3 * k_2_C_s_1_3

Rate_2_C_s_1_3 = R_s_3*k_2_C_s_1_3

a partial conversion rate of R* in this transition

molecularity:=1:
eq3_Cs13_2b:= dcRs1dt_2_C_s_1_3 = molecularity*Rate_2_C_s_1_3

dcRs1dt_2_C_s_1_3 = Rate_2_C_s_1_3

The final form

eq3_Cs13_2c:= eq3_Cs13_2b | eq3_Cs13_2a

dcRs1dt_2_C_s_1_3 = R_s_3*k_2_C_s_1_3

 

 

 

R* <=> R****

 

a forward reaction rate  for the transition

eq3_Cs14_1a:= Rate_1_C_s_1_4 = R_s_1 * k_1_C_s_1_4

Rate_1_C_s_1_4 = R_s_1*k_1_C_s_1_4

a partial conversion rate of R* in this transition

molecularity:=-1:
eq3_Cs14_1b:= dcRs1dt_1_C_s_1_4 = molecularity*Rate_1_C_s_1_4

dcRs1dt_1_C_s_1_4 = -Rate_1_C_s_1_4

The final form

eq3_Cs14_1c:= eq3_Cs14_1b | eq3_Cs14_1a

dcRs1dt_1_C_s_1_4 = -R_s_1*k_1_C_s_1_4

 

 

a reverse reaction rate for the transition

eq3_Cs14_2a:= Rate_2_C_s_1_4 = R_s_4 * k_2_C_s_1_4

Rate_2_C_s_1_4 = R_s_4*k_2_C_s_1_4

a partial conversion rate of R* in this transition

molecularity:=1:
eq3_Cs14_2b:= dcRs1dt_2_C_s_1_4 = molecularity*Rate_2_C_s_1_4

dcRs1dt_2_C_s_1_4 = Rate_2_C_s_1_4

The final form

eq3_Cs14_2c:= eq3_Cs14_2b | eq3_Cs14_2a

dcRs1dt_2_C_s_1_4 = R_s_4*k_2_C_s_1_4

 

 

 

R* <=> R*****

 

a forward reaction rate  for the transition

eq3_Cs15_1a:= Rate_1_C_s_1_5 = R_s_1 * k_1_C_s_1_5

Rate_1_C_s_1_5 = R_s_1*k_1_C_s_1_5

a partial conversion rate of R* in this transition

molecularity:=-1:
eq3_Cs15_1b:= dcRs1dt_1_C_s_1_5 = molecularity*Rate_1_C_s_1_5

dcRs1dt_1_C_s_1_5 = -Rate_1_C_s_1_5

The final form

eq3_Cs15_1c:= eq3_Cs15_1b | eq3_Cs15_1a

dcRs1dt_1_C_s_1_5 = -R_s_1*k_1_C_s_1_5

 

 

a reverse reaction rate for the transition

eq3_Cs15_2a:= Rate_2_C_s_1_5 = R_s_5 * k_2_C_s_1_5

Rate_2_C_s_1_5 = R_s_5*k_2_C_s_1_5

a partial conversion rate of R* in this transition

molecularity:=1:
eq3_Cs15_2b:= dcRs1dt_2_C_s_1_5 = molecularity*Rate_2_C_s_1_5

dcRs1dt_2_C_s_1_5 = Rate_2_C_s_1_5

The final form

eq3_Cs15_2c:= eq3_Cs15_2b | eq3_Cs15_2a

dcRs1dt_2_C_s_1_5 = R_s_5*k_2_C_s_1_5

 

 

 

Summary of partial conversion rates for the species

eq3_Bs1_1c; eq3_Bs1_2c;
eq3_Cs12_1c; eq3_Cs12_2c;  eq3_Cs13_1c;  eq3_Cs13_2c;  eq3_Cs14_1c;  eq3_Cs14_2c;  eq3_Cs15_1c;  eq3_Cs15_2c;

dcRs1dt_1_B_1_s_1 = R*k_1_B_1_s_1
dcRs1dt_2_B_1_s_1 = -R_s_1*k_2_B_1_s_1
dcRs1dt_1_C_s_1_2 = -R_s_1*k_1_C_s_1_2
dcRs1dt_2_C_s_1_2 = R_s_2*k_2_C_s_1_2
dcRs1dt_1_C_s_1_3 = -R_s_1*k_1_C_s_1_3
dcRs1dt_2_C_s_1_3 = R_s_3*k_2_C_s_1_3
dcRs1dt_1_C_s_1_4 = -R_s_1*k_1_C_s_1_4
dcRs1dt_2_C_s_1_4 = R_s_4*k_2_C_s_1_4
dcRs1dt_1_C_s_1_5 = -R_s_1*k_1_C_s_1_5
dcRs1dt_2_C_s_1_5 = R_s_5*k_2_C_s_1_5

 

 

 

Net conversion rate for the species

I will create equations for all five versions of the mechanism.

 

U-R-RL

dcRs1dt_N = dcRs1dt_1_B_1_s_1 + dcRs1dt_2_B_1_s_1

dcRs1dt_N = dcRs1dt_1_B_1_s_1 + dcRs1dt_2_B_1_s_1

Substitute

eq3_Rs1_N__U_R_RL:= % | eq3_Bs1_1c |  eq3_Bs1_2c | \
eq3_Cs12_1c |  eq3_Cs12_2c |  \
eq3_Cs13_1c |   eq3_Cs13_2c |  \
eq3_Cs14_1c |   eq3_Cs14_2c |  \
eq3_Cs15_1c |   eq3_Cs15_2c;

dcRs1dt_N = R*k_1_B_1_s_1 - R_s_1*k_2_B_1_s_1

 

 

U-2R-RL

dcRs1dt_N = dcRs1dt_1_B_1_s_1 + dcRs1dt_2_B_1_s_1 + dcRs1dt_1_C_s_1_2 + dcRs1dt_2_C_s_1_2

dcRs1dt_N = dcRs1dt_1_B_1_s_1 + dcRs1dt_1_C_s_1_2 + dcRs1dt_2_B_1_s_1 + dcRs1dt_2_C_s_1_2

Substitute

eq3_Rs1_N__U_2R_RL:= % | eq3_Bs1_1c |  eq3_Bs1_2c | \
eq3_Cs12_1c |  eq3_Cs12_2c |  \
eq3_Cs13_1c |   eq3_Cs13_2c |  \
eq3_Cs14_1c |   eq3_Cs14_2c |  \
eq3_Cs15_1c |   eq3_Cs15_2c;

dcRs1dt_N = R*k_1_B_1_s_1 - R_s_1*k_1_C_s_1_2 - R_s_1*k_2_B_1_s_1 + R_s_2*k_2_C_s_1_2

 

 

 

U-3R-RL

dcRs1dt_N = dcRs1dt_1_B_1_s_1 + dcRs1dt_2_B_1_s_1 \
+ dcRs1dt_1_C_s_1_2 + dcRs1dt_2_C_s_1_2 \
+ dcRs1dt_1_C_s_1_3 + dcRs1dt_2_C_s_1_3

dcRs1dt_N = dcRs1dt_1_B_1_s_1 + dcRs1dt_1_C_s_1_2 + dcRs1dt_1_C_s_1_3 + dcRs1dt_2_B_1_s_1 + dcRs1dt_2_C_s_1_2 + dcRs1dt_2_C_s_1_3

Substitute

eq3_Rs1_N__U_3R_RL:= % | eq3_Bs1_1c |  eq3_Bs1_2c | \
eq3_Cs12_1c |  eq3_Cs12_2c |  \
eq3_Cs13_1c |   eq3_Cs13_2c |  \
eq3_Cs14_1c |   eq3_Cs14_2c |  \
eq3_Cs15_1c |   eq3_Cs15_2c;

dcRs1dt_N = R*k_1_B_1_s_1 - R_s_1*k_1_C_s_1_2 - R_s_1*k_1_C_s_1_3 - R_s_1*k_2_B_1_s_1 + R_s_2*k_2_C_s_1_2 + R_s_3*k_2_C_s_1_3

 

 

 

U-4R-RL

dcRs1dt_N = dcRs1dt_1_B_1_s_1 + dcRs1dt_2_B_1_s_1 \
+ dcRs1dt_1_C_s_1_2 + dcRs1dt_2_C_s_1_2 \
+ dcRs1dt_1_C_s_1_3 + dcRs1dt_2_C_s_1_3  \
+ dcRs1dt_1_C_s_1_4 + dcRs1dt_2_C_s_1_4

dcRs1dt_N = dcRs1dt_1_B_1_s_1 + dcRs1dt_1_C_s_1_2 + dcRs1dt_1_C_s_1_3 + dcRs1dt_1_C_s_1_4 + dcRs1dt_2_B_1_s_1 + dcRs1dt_2_C_s_1_2 + dcRs1dt_2_C_s_1_3 + dcRs1dt_2_C_s_1_4

Substitute

eq3_Rs1_N__U_4R_RL:= % | eq3_Bs1_1c |  eq3_Bs1_2c | \
eq3_Cs12_1c |  eq3_Cs12_2c |  \
eq3_Cs13_1c |   eq3_Cs13_2c |  \
eq3_Cs14_1c |   eq3_Cs14_2c |  \
eq3_Cs15_1c |   eq3_Cs15_2c;

dcRs1dt_N = R*k_1_B_1_s_1 - R_s_1*k_1_C_s_1_2 - R_s_1*k_1_C_s_1_3 - R_s_1*k_1_C_s_1_4 - R_s_1*k_2_B_1_s_1 + R_s_2*k_2_C_s_1_2 + R_s_3*k_2_C_s_1_3 + R_s_4*k_2_C_s_1_4

 

 

 

U-5R-RL

dcRs1dt_N = dcRs1dt_1_B_1_s_1 + dcRs1dt_2_B_1_s_1 \
+ dcRs1dt_1_C_s_1_2 + dcRs1dt_2_C_s_1_2 \
+ dcRs1dt_1_C_s_1_3 + dcRs1dt_2_C_s_1_3  \
+ dcRs1dt_1_C_s_1_4 + dcRs1dt_2_C_s_1_4 \
+ dcRs1dt_1_C_s_1_5 + dcRs1dt_2_C_s_1_5

dcRs1dt_N = dcRs1dt_1_B_1_s_1 + dcRs1dt_1_C_s_1_2 + dcRs1dt_1_C_s_1_3 + dcRs1dt_1_C_s_1_4 + dcRs1dt_1_C_s_1_5 + dcRs1dt_2_B_1_s_1 + dcRs1dt_2_C_s_1_2 + dcRs1dt_2_C_s_1_3 + dcRs1dt_2_C_s_1_4 + dcRs1dt_2_C_s_1_5

Substitute

eq3_Rs1_N__U_5R_RL:= % | eq3_Bs1_1c |  eq3_Bs1_2c | \
eq3_Cs12_1c |  eq3_Cs12_2c |  \
eq3_Cs13_1c |   eq3_Cs13_2c |  \
eq3_Cs14_1c |   eq3_Cs14_2c |  \
eq3_Cs15_1c |   eq3_Cs15_2c;

dcRs1dt_N = R*k_1_B_1_s_1 - R_s_1*k_1_C_s_1_2 - R_s_1*k_1_C_s_1_3 - R_s_1*k_1_C_s_1_4 - R_s_1*k_1_C_s_1_5 - R_s_1*k_2_B_1_s_1 + R_s_2*k_2_C_s_1_2 + R_s_3*k_2_C_s_1_3 + R_s_4*k_2_C_s_1_4 + R_s_5*k_2_C_s_1_5

 

 

 

Summary of equations for R*

eq3_Rs1_N__U_R_RL;
eq3_Rs1_N__U_2R_RL;
eq3_Rs1_N__U_3R_RL;
eq3_Rs1_N__U_4R_RL;
eq3_Rs1_N__U_5R_RL;

dcRs1dt_N = R*k_1_B_1_s_1 - R_s_1*k_2_B_1_s_1
dcRs1dt_N = R*k_1_B_1_s_1 - R_s_1*k_1_C_s_1_2 - R_s_1*k_2_B_1_s_1 + R_s_2*k_2_C_s_1_2
dcRs1dt_N = R*k_1_B_1_s_1 - R_s_1*k_1_C_s_1_2 - R_s_1*k_1_C_s_1_3 - R_s_1*k_2_B_1_s_1 + R_s_2*k_2_C_s_1_2 + R_s_3*k_2_C_s_1_3
dcRs1dt_N = R*k_1_B_1_s_1 - R_s_1*k_1_C_s_1_2 - R_s_1*k_1_C_s_1_3 - R_s_1*k_1_C_s_1_4 - R_s_1*k_2_B_1_s_1 + R_s_2*k_2_C_s_1_2 + R_s_3*k_2_C_s_1_3 + R_s_4*k_2_C_s_1_4
dcRs1dt_N = R*k_1_B_1_s_1 - R_s_1*k_1_C_s_1_2 - R_s_1*k_1_C_s_1_3 - R_s_1*k_1_C_s_1_4 - R_s_1*k_1_C_s_1_5 - R_s_1*k_2_B_1_s_1 + R_s_2*k_2_C_s_1_2 + R_s_3*k_2_C_s_1_3 + R_s_4*k_2_C_s_1_4 + R_s_5*k_2_C_s_1_5

 

 

 

Back to  Equations for each species

 

 

 

 

 

 

 

 

Species: R**

Equations group: 4

 

 

 

Equations subgroup: B1

 

 

R <=> R**

(towards species)

 

a forward reaction rate  for the transition

eq4_Bs2_1a:= eq1_Bs2_1a;

Rate_1_B_1_s_2 = R*k_1_B_1_s_2

a partial conversion rate of R** in this transition

molecularity:=1:
eq4_Bs2_1b:= dcRs2dt_1_B_1_s_2 = molecularity*Rate_1_B_1_s_2

dcRs2dt_1_B_1_s_2 = Rate_1_B_1_s_2

The final form

eq4_Bs2_1c:= eq4_Bs2_1b | eq4_Bs2_1a

dcRs2dt_1_B_1_s_2 = R*k_1_B_1_s_2

 

 

a reverse reaction rate for the transition

eq4_Bs2_2a:= eq1_Bs2_2a;

Rate_2_B_1_s_2 = R_s_2*k_2_B_1_s_2

a partial conversion rate of R* in this transition

molecularity:=-1:
eq4_Bs2_2b:= dcRs2dt_2_B_1_s_2 = molecularity*Rate_2_B_1_s_2

dcRs2dt_2_B_1_s_2 = -Rate_2_B_1_s_2

The final form

eq4_Bs2_2c:= eq4_Bs2_2b | eq4_Bs2_2a

dcRs2dt_2_B_1_s_2 = -R_s_2*k_2_B_1_s_2

 

 

 

Equations subgroup: C

 

R* <=> R** 

(towards species)

 

eq3_Cs12_1a

Rate_1_C_s_1_2 = R_s_1*k_1_C_s_1_2

 

a forward reaction rate  for the transition

eq4_Cs12_1a:= eq3_Cs12_1a

Rate_1_C_s_1_2 = R_s_1*k_1_C_s_1_2

a partial conversion rate of R** in this transition

molecularity:=1:
eq4_Cs12_1b:= dcRs2dt_1_C_s_1_2 = molecularity*Rate_1_C_s_1_2

dcRs2dt_1_C_s_1_2 = Rate_1_C_s_1_2

The final form

eq4_Cs12_1c:= eq4_Cs12_1b | eq4_Cs12_1a

dcRs2dt_1_C_s_1_2 = R_s_1*k_1_C_s_1_2

 

 

a reverse reaction rate for the transition

eq4_Cs12_2a:= eq3_Cs12_2a

Rate_2_C_s_1_2 = R_s_2*k_2_C_s_1_2

a partial conversion rate of R** in this transition

molecularity:=-1:
eq4_Cs12_2b:= dcRs2dt_2_C_s_1_2 = molecularity*Rate_2_C_s_1_2

dcRs2dt_2_C_s_1_2 = -Rate_2_C_s_1_2

The final form

eq4_Cs12_2c:= eq4_Cs12_2b | eq4_Cs12_2a

dcRs2dt_2_C_s_1_2 = -R_s_2*k_2_C_s_1_2

 

 

 

R** <=> R***

(away from species)

 

a forward reaction rate  for the transition

eq4_Cs23_1a:= Rate_1_C_s_2_3 = R_s_2 * k_1_C_s_2_3

Rate_1_C_s_2_3 = R_s_2*k_1_C_s_2_3

a partial conversion rate of R** in this transition

molecularity:=-1:
eq4_Cs23_1b:= dcRs2dt_1_C_s_2_3 = molecularity*Rate_1_C_s_2_3

dcRs2dt_1_C_s_2_3 = -Rate_1_C_s_2_3

The final form

eq4_Cs23_1c:= eq4_Cs23_1b | eq4_Cs23_1a

dcRs2dt_1_C_s_2_3 = -R_s_2*k_1_C_s_2_3

 

 

a reverse reaction rate for the transition

eq4_Cs23_2a:= Rate_2_C_s_2_3 = R_s_3 * k_2_C_s_2_3

Rate_2_C_s_2_3 = R_s_3*k_2_C_s_2_3

a partial conversion rate of R** in this transition

molecularity:=1:
eq4_Cs23_2b:= dcRs2dt_2_C_s_2_3 = molecularity*Rate_2_C_s_2_3

dcRs2dt_2_C_s_2_3 = Rate_2_C_s_2_3

The final form

eq4_Cs23_2c:= eq4_Cs23_2b | eq4_Cs23_2a

dcRs2dt_2_C_s_2_3 = R_s_3*k_2_C_s_2_3

 

 

 

 

R** <=> R****

(away from species)

 

a forward reaction rate  for the transition

eq4_Cs24_1a:= Rate_1_C_s_2_4 = R_s_2 * k_1_C_s_2_4

Rate_1_C_s_2_4 = R_s_2*k_1_C_s_2_4

a partial conversion rate of R** in this transition

molecularity:=-1:
eq4_Cs24_1b:= dcRs2dt_1_C_s_2_4 = molecularity*Rate_1_C_s_2_4

dcRs2dt_1_C_s_2_4 = -Rate_1_C_s_2_4

The final form

eq4_Cs24_1c:= eq4_Cs24_1b | eq4_Cs24_1a

dcRs2dt_1_C_s_2_4 = -R_s_2*k_1_C_s_2_4

 

 

a reverse reaction rate for the transition

eq4_Cs24_2a:= Rate_2_C_s_2_4 = R_s_4 * k_2_C_s_2_4

Rate_2_C_s_2_4 = R_s_4*k_2_C_s_2_4

a partial conversion rate of R** in this transition

molecularity:=1:
eq4_Cs24_2b:= dcRs2dt_2_C_s_2_4 = molecularity*Rate_2_C_s_2_4

dcRs2dt_2_C_s_2_4 = Rate_2_C_s_2_4

The final form

eq4_Cs24_2c:= eq4_Cs24_2b | eq4_Cs24_2a

dcRs2dt_2_C_s_2_4 = R_s_4*k_2_C_s_2_4

 

 

 

R** <=> R*****

(away from species)

 

a forward reaction rate  for the transition

eq4_Cs25_1a:= Rate_1_C_s_2_5 = R_s_2 * k_1_C_s_2_5

Rate_1_C_s_2_5 = R_s_2*k_1_C_s_2_5

a partial conversion rate of R** in this transition

molecularity:=-1:
eq4_Cs25_1b:= dcRs2dt_1_C_s_2_5 = molecularity*Rate_1_C_s_2_5

dcRs2dt_1_C_s_2_5 = -Rate_1_C_s_2_5

The final form

eq4_Cs25_1c:= eq4_Cs25_1b | eq4_Cs25_1a

dcRs2dt_1_C_s_2_5 = -R_s_2*k_1_C_s_2_5

 

 

a reverse reaction rate for the transition

eq4_Cs25_2a:= Rate_2_C_s_2_5 = R_s_5 * k_2_C_s_2_5

Rate_2_C_s_2_5 = R_s_5*k_2_C_s_2_5

a partial conversion rate of R** in this transition

molecularity:=1:
eq4_Cs25_2b:= dcRs2dt_2_C_s_2_5 = molecularity*Rate_2_C_s_2_5

dcRs2dt_2_C_s_2_5 = Rate_2_C_s_2_5

The final form

eq4_Cs25_2c:= eq4_Cs25_2b | eq4_Cs25_2a

dcRs2dt_2_C_s_2_5 = R_s_5*k_2_C_s_2_5

 

 

 

 

 

Net conversion rate for the species

I will create equations for all five versions of the mechanism.

 

U-R-RL (species not present)

eq4_Rs2_N__U_R_RL:= 0

0

 

U-2R-RL

dcRs2dt_N = dcRs2dt_1_B_1_s_2 + dcRs2dt_2_B_1_s_2 + dcRs2dt_1_C_s_1_2 + dcRs2dt_2_C_s_1_2

dcRs2dt_N = dcRs2dt_1_B_1_s_2 + dcRs2dt_1_C_s_1_2 + dcRs2dt_2_B_1_s_2 + dcRs2dt_2_C_s_1_2

Substitute

eq4_Rs2_N__U_2R_RL:= % | eq4_Bs2_1c |  eq4_Bs2_2c | \
eq4_Cs12_1c |  eq4_Cs12_2c |  \
eq4_Cs23_1c |   eq4_Cs23_2c |  \
eq4_Cs24_1c |   eq4_Cs24_2c |  \
eq4_Cs25_1c |   eq4_Cs25_2c;

dcRs2dt_N = R*k_1_B_1_s_2 + R_s_1*k_1_C_s_1_2 - R_s_2*k_2_B_1_s_2 - R_s_2*k_2_C_s_1_2

 

 

U-3R-RL

dcRs2dt_N = dcRs2dt_1_B_1_s_2 + dcRs2dt_2_B_1_s_2 + \
dcRs2dt_1_C_s_1_2 + dcRs2dt_2_C_s_1_2 + \
dcRs2dt_1_C_s_2_3 + dcRs2dt_2_C_s_2_3

dcRs2dt_N = dcRs2dt_1_B_1_s_2 + dcRs2dt_1_C_s_1_2 + dcRs2dt_1_C_s_2_3 + dcRs2dt_2_B_1_s_2 + dcRs2dt_2_C_s_1_2 + dcRs2dt_2_C_s_2_3

Substitute

eq4_Rs2_N__U_3R_RL:= % | eq4_Bs2_1c |  eq4_Bs2_2c | \
eq4_Cs12_1c |  eq4_Cs12_2c |  \
eq4_Cs23_1c |   eq4_Cs23_2c |  \
eq4_Cs24_1c |   eq4_Cs24_2c |  \
eq4_Cs25_1c |   eq4_Cs25_2c;

dcRs2dt_N = R*k_1_B_1_s_2 + R_s_1*k_1_C_s_1_2 - R_s_2*k_1_C_s_2_3 - R_s_2*k_2_B_1_s_2 - R_s_2*k_2_C_s_1_2 + R_s_3*k_2_C_s_2_3

 

 

 

U-4R-RL

dcRs2dt_N = dcRs2dt_1_B_1_s_2 + dcRs2dt_2_B_1_s_2 + \
dcRs2dt_1_C_s_1_2 + dcRs2dt_2_C_s_1_2 + \
dcRs2dt_1_C_s_2_3 + dcRs2dt_2_C_s_2_3 + \
dcRs2dt_1_C_s_2_4 + dcRs2dt_2_C_s_2_4

dcRs2dt_N = dcRs2dt_1_B_1_s_2 + dcRs2dt_1_C_s_1_2 + dcRs2dt_1_C_s_2_3 + dcRs2dt_1_C_s_2_4 + dcRs2dt_2_B_1_s_2 + dcRs2dt_2_C_s_1_2 + dcRs2dt_2_C_s_2_3 + dcRs2dt_2_C_s_2_4

Substitute

eq4_Rs2_N__U_4R_RL:= % | eq4_Bs2_1c |  eq4_Bs2_2c | \
eq4_Cs12_1c |  eq4_Cs12_2c |  \
eq4_Cs23_1c |   eq4_Cs23_2c |  \
eq4_Cs24_1c |   eq4_Cs24_2c |  \
eq4_Cs25_1c |   eq4_Cs25_2c;

dcRs2dt_N = R*k_1_B_1_s_2 + R_s_1*k_1_C_s_1_2 - R_s_2*k_1_C_s_2_3 - R_s_2*k_1_C_s_2_4 - R_s_2*k_2_B_1_s_2 - R_s_2*k_2_C_s_1_2 + R_s_3*k_2_C_s_2_3 + R_s_4*k_2_C_s_2_4

 

 

 

U-5R-RL

dcRs2dt_N = dcRs2dt_1_B_1_s_2 + dcRs2dt_2_B_1_s_2 + \
dcRs2dt_1_C_s_1_2 + dcRs2dt_2_C_s_1_2 + \
dcRs2dt_1_C_s_2_3 + dcRs2dt_2_C_s_2_3 + \
dcRs2dt_1_C_s_2_4 + dcRs2dt_2_C_s_2_4 + \
dcRs2dt_1_C_s_2_5 + dcRs2dt_2_C_s_2_5

dcRs2dt_N = dcRs2dt_1_B_1_s_2 + dcRs2dt_1_C_s_1_2 + dcRs2dt_1_C_s_2_3 + dcRs2dt_1_C_s_2_4 + dcRs2dt_1_C_s_2_5 + dcRs2dt_2_B_1_s_2 + dcRs2dt_2_C_s_1_2 + dcRs2dt_2_C_s_2_3 + dcRs2dt_2_C_s_2_4 + dcRs2dt_2_C_s_2_5

Substitute

eq4_Rs2_N__U_5R_RL:= % | eq4_Bs2_1c |  eq4_Bs2_2c | \
eq4_Cs12_1c |  eq4_Cs12_2c |  \
eq4_Cs23_1c |   eq4_Cs23_2c |  \
eq4_Cs24_1c |   eq4_Cs24_2c |  \
eq4_Cs25_1c |   eq4_Cs25_2c;

dcRs2dt_N = R*k_1_B_1_s_2 + R_s_1*k_1_C_s_1_2 - R_s_2*k_1_C_s_2_3 - R_s_2*k_1_C_s_2_4 - R_s_2*k_1_C_s_2_5 - R_s_2*k_2_B_1_s_2 - R_s_2*k_2_C_s_1_2 + R_s_3*k_2_C_s_2_3 + R_s_4*k_2_C_s_2_4 + R_s_5*k_2_C_s_2_5

 

 

 

Summary of equations for R**

eq4_Rs2_N__U_R_RL;
eq4_Rs2_N__U_2R_RL;
eq4_Rs2_N__U_3R_RL;
eq4_Rs2_N__U_4R_RL;
eq4_Rs2_N__U_5R_RL;

0
dcRs2dt_N = R*k_1_B_1_s_2 + R_s_1*k_1_C_s_1_2 - R_s_2*k_2_B_1_s_2 - R_s_2*k_2_C_s_1_2
dcRs2dt_N = R*k_1_B_1_s_2 + R_s_1*k_1_C_s_1_2 - R_s_2*k_1_C_s_2_3 - R_s_2*k_2_B_1_s_2 - R_s_2*k_2_C_s_1_2 + R_s_3*k_2_C_s_2_3
dcRs2dt_N = R*k_1_B_1_s_2 + R_s_1*k_1_C_s_1_2 - R_s_2*k_1_C_s_2_3 - R_s_2*k_1_C_s_2_4 - R_s_2*k_2_B_1_s_2 - R_s_2*k_2_C_s_1_2 + R_s_3*k_2_C_s_2_3 + R_s_4*k_2_C_s_2_4
dcRs2dt_N = R*k_1_B_1_s_2 + R_s_1*k_1_C_s_1_2 - R_s_2*k_1_C_s_2_3 - R_s_2*k_1_C_s_2_4 - R_s_2*k_1_C_s_2_5 - R_s_2*k_2_B_1_s_2 - R_s_2*k_2_C_s_1_2 + R_s_3*k_2_C_s_2_3 + R_s_4*k_2_C_s_2_4 + R_s_5*k_2_C_s_2_5

 

 

 

 

 

Back to  Equations for each species

 

 

 

Species: R***

Equations group: 5

 

 

 

Equations subgroup: B1

 

 

R <=> R***

(towards species)

 

a forward reaction rate  for the transition

eq5_Bs3_1a:= eq1_Bs3_1a;

Rate_1_B_1_s_3 = R*k_1_B_1_s_3

a partial conversion rate of R*** in this transition

molecularity:=1:
eq5_Bs3_1b:= dcRs3dt_1_B_1_s_3 = molecularity*Rate_1_B_1_s_3

dcRs3dt_1_B_1_s_3 = Rate_1_B_1_s_3

The final form

eq5_Bs3_1c:= eq5_Bs3_1b | eq5_Bs3_1a

dcRs3dt_1_B_1_s_3 = R*k_1_B_1_s_3

 

 

a reverse reaction rate for the transition

eq5_Bs3_2a:= eq1_Bs3_2a;

Rate_2_B_1_s_3 = R_s_3*k_2_B_1_s_3

a partial conversion rate of R* in this transition

molecularity:=-1:
eq5_Bs3_2b:= dcRs3dt_2_B_1_s_3 = molecularity*Rate_2_B_1_s_3

dcRs3dt_2_B_1_s_3 = -Rate_2_B_1_s_3

The final form

eq5_Bs3_2c:= eq5_Bs3_2b | eq5_Bs3_2a

dcRs3dt_2_B_1_s_3 = -R_s_3*k_2_B_1_s_3

 

 

 

Equations subgroup: C

 

R* <=> R*** 

(towards species)

 

a forward reaction rate  for the transition

eq5_Cs13_1a:= eq3_Cs13_1a

Rate_1_C_s_1_3 = R_s_1*k_1_C_s_1_3

a partial conversion rate of R** in this transition

molecularity:=1:
eq5_Cs13_1b:= dcRs3dt_1_C_s_1_3 = molecularity*Rate_1_C_s_1_3

dcRs3dt_1_C_s_1_3 = Rate_1_C_s_1_3

The final form

eq5_Cs13_1c:= eq5_Cs13_1b | eq5_Cs13_1a

dcRs3dt_1_C_s_1_3 = R_s_1*k_1_C_s_1_3

 

 

a reverse reaction rate for the transition

eq5_Cs13_2a:= eq3_Cs13_2a

Rate_2_C_s_1_3 = R_s_3*k_2_C_s_1_3

a partial conversion rate of R** in this transition

molecularity:=-1:
eq5_Cs13_2b:= dcRs3dt_2_C_s_1_3 = molecularity*Rate_2_C_s_1_3

dcRs3dt_2_C_s_1_3 = -Rate_2_C_s_1_3

The final form

eq5_Cs13_2c:= eq5_Cs13_2b | eq5_Cs13_2a

dcRs3dt_2_C_s_1_3 = -R_s_3*k_2_C_s_1_3

 

 

 

 

R** <=> R*** 

(towards species)

 

a forward reaction rate  for the transition

eq5_Cs23_1a:= eq4_Cs23_1a

Rate_1_C_s_2_3 = R_s_2*k_1_C_s_2_3

a partial conversion rate of R** in this transition

molecularity:=1:
eq5_Cs23_1b:= dcRs3dt_1_C_s_2_3 = molecularity*Rate_1_C_s_2_3

dcRs3dt_1_C_s_2_3 = Rate_1_C_s_2_3

The final form

eq5_Cs23_1c:= eq5_Cs23_1b | eq5_Cs23_1a

dcRs3dt_1_C_s_2_3 = R_s_2*k_1_C_s_2_3

 

 

a reverse reaction rate for the transition

eq5_Cs23_2a:= eq4_Cs23_2a

Rate_2_C_s_2_3 = R_s_3*k_2_C_s_2_3

a partial conversion rate of R** in this transition

molecularity:=-1:
eq5_Cs23_2b:= dcRs3dt_2_C_s_2_3 = molecularity*Rate_2_C_s_2_3

dcRs3dt_2_C_s_2_3 = -Rate_2_C_s_2_3

The final form

eq5_Cs23_2c:= eq5_Cs23_2b | eq5_Cs23_2a

dcRs3dt_2_C_s_2_3 = -R_s_3*k_2_C_s_2_3

 

 

 

R*** <=> R****

(away from species)

 

a forward reaction rate  for the transition

eq5_Cs34_1a:= Rate_1_C_s_3_4 = R_s_3 * k_1_C_s_3_4

Rate_1_C_s_3_4 = R_s_3*k_1_C_s_3_4

a partial conversion rate of R** in this transition

molecularity:=-1:
eq5_Cs34_1b:= dcRs3dt_1_C_s_3_4 = molecularity*Rate_1_C_s_3_4

dcRs3dt_1_C_s_3_4 = -Rate_1_C_s_3_4

The final form

eq5_Cs34_1c:= eq5_Cs34_1b | eq5_Cs34_1a

dcRs3dt_1_C_s_3_4 = -R_s_3*k_1_C_s_3_4

 

 

a reverse reaction rate for the transition

eq5_Cs34_2a:= Rate_2_C_s_3_4 = R_s_4 * k_2_C_s_3_4

Rate_2_C_s_3_4 = R_s_4*k_2_C_s_3_4

a partial conversion rate of R** in this transition

molecularity:=1:
eq5_Cs34_2b:= dcRs3dt_2_C_s_3_4 = molecularity*Rate_2_C_s_3_4

dcRs3dt_2_C_s_3_4 = Rate_2_C_s_3_4

The final form

eq5_Cs34_2c:= eq5_Cs34_2b | eq5_Cs34_2a

dcRs3dt_2_C_s_3_4 = R_s_4*k_2_C_s_3_4

 

 

 

R*** <=> R*****

(away from species)

 

a forward reaction rate  for the transition

eq5_Cs35_1a:= Rate_1_C_s_3_5 = R_s_3 * k_1_C_s_3_5

Rate_1_C_s_3_5 = R_s_3*k_1_C_s_3_5

a partial conversion rate of R** in this transition

molecularity:=-1:
eq5_Cs35_1b:= dcRs3dt_1_C_s_3_5 = molecularity*Rate_1_C_s_3_5

dcRs3dt_1_C_s_3_5 = -Rate_1_C_s_3_5

The final form

eq5_Cs35_1c:= eq5_Cs35_1b | eq5_Cs35_1a

dcRs3dt_1_C_s_3_5 = -R_s_3*k_1_C_s_3_5

 

 

a reverse reaction rate for the transition

eq5_Cs35_2a:= Rate_2_C_s_3_5 = R_s_5 * k_2_C_s_3_5

Rate_2_C_s_3_5 = R_s_5*k_2_C_s_3_5

a partial conversion rate of R** in this transition

molecularity:=1:
eq5_Cs35_2b:= dcRs3dt_2_C_s_3_5 = molecularity*Rate_2_C_s_3_5

dcRs3dt_2_C_s_3_5 = Rate_2_C_s_3_5

The final form

eq5_Cs35_2c:= eq5_Cs35_2b | eq5_Cs35_2a

dcRs3dt_2_C_s_3_5 = R_s_5*k_2_C_s_3_5

 

 

 

Net conversion rate for the species

I will create equations for all five versions of the mechanism.

 

U-R-RL (species not present)

eq5_Rs3_N__U_R_RL:= 0

0

 

U-2R-RL (species not present)

eq5_Rs3_N__U_2R_RL:= 0

0

 

U-3R-RL

dcRs3dt_N = dcRs3dt_1_B_1_s_3 + dcRs3dt_2_B_1_s_3 + \
dcRs3dt_1_C_s_1_3 + dcRs3dt_2_C_s_1_3 + \
dcRs3dt_1_C_s_2_3 + dcRs3dt_2_C_s_2_3

dcRs3dt_N = dcRs3dt_1_B_1_s_3 + dcRs3dt_1_C_s_1_3 + dcRs3dt_1_C_s_2_3 + dcRs3dt_2_B_1_s_3 + dcRs3dt_2_C_s_1_3 + dcRs3dt_2_C_s_2_3

Substitute

eq5_Rs3_N__U_3R_RL:= % | eq5_Bs3_1c |  eq5_Bs3_2c | \
eq5_Cs13_1c |  eq5_Cs13_2c |  \
eq5_Cs23_1c |   eq5_Cs23_2c |  \
eq5_Cs34_1c |   eq5_Cs34_2c |  \
eq5_Cs35_1c |   eq5_Cs35_2c;

dcRs3dt_N = R*k_1_B_1_s_3 + R_s_1*k_1_C_s_1_3 + R_s_2*k_1_C_s_2_3 - R_s_3*k_2_B_1_s_3 - R_s_3*k_2_C_s_1_3 - R_s_3*k_2_C_s_2_3

 

 

 

U-4R-RL

dcRs3dt_N = dcRs3dt_1_B_1_s_3 + dcRs3dt_2_B_1_s_3 + \
dcRs3dt_1_C_s_1_3 + dcRs3dt_2_C_s_1_3 + \
dcRs3dt_1_C_s_2_3 + dcRs3dt_2_C_s_2_3  + \
dcRs3dt_1_C_s_3_4 + dcRs3dt_2_C_s_3_4

dcRs3dt_N = dcRs3dt_1_B_1_s_3 + dcRs3dt_1_C_s_1_3 + dcRs3dt_1_C_s_2_3 + dcRs3dt_1_C_s_3_4 + dcRs3dt_2_B_1_s_3 + dcRs3dt_2_C_s_1_3 + dcRs3dt_2_C_s_2_3 + dcRs3dt_2_C_s_3_4

Substitute

eq5_Rs3_N__U_4R_RL:= % | eq5_Bs3_1c |  eq5_Bs3_2c | \
eq5_Cs13_1c |  eq5_Cs13_2c |  \
eq5_Cs23_1c |   eq5_Cs23_2c |  \
eq5_Cs34_1c |   eq5_Cs34_2c |  \
eq5_Cs35_1c |   eq5_Cs35_2c;

dcRs3dt_N = R*k_1_B_1_s_3 + R_s_1*k_1_C_s_1_3 + R_s_2*k_1_C_s_2_3 - R_s_3*k_1_C_s_3_4 - R_s_3*k_2_B_1_s_3 - R_s_3*k_2_C_s_1_3 - R_s_3*k_2_C_s_2_3 + R_s_4*k_2_C_s_3_4

 

 

U-5R-RL

dcRs3dt_N = dcRs3dt_1_B_1_s_3 + dcRs3dt_2_B_1_s_3 + \
dcRs3dt_1_C_s_1_3 + dcRs3dt_2_C_s_1_3 + \
dcRs3dt_1_C_s_2_3 + dcRs3dt_2_C_s_2_3  + \
dcRs3dt_1_C_s_3_4 + dcRs3dt_2_C_s_3_4  + \
dcRs3dt_1_C_s_3_5 + dcRs3dt_2_C_s_3_5

dcRs3dt_N = dcRs3dt_1_B_1_s_3 + dcRs3dt_1_C_s_1_3 + dcRs3dt_1_C_s_2_3 + dcRs3dt_1_C_s_3_4 + dcRs3dt_1_C_s_3_5 + dcRs3dt_2_B_1_s_3 + dcRs3dt_2_C_s_1_3 + dcRs3dt_2_C_s_2_3 + dcRs3dt_2_C_s_3_4 + dcRs3dt_2_C_s_3_5

Substitute

eq5_Rs3_N__U_5R_RL:= % | eq5_Bs3_1c |  eq5_Bs3_2c | \
eq5_Cs13_1c |  eq5_Cs13_2c |  \
eq5_Cs23_1c |   eq5_Cs23_2c |  \
eq5_Cs34_1c |   eq5_Cs34_2c |  \
eq5_Cs35_1c |   eq5_Cs35_2c;

dcRs3dt_N = R*k_1_B_1_s_3 + R_s_1*k_1_C_s_1_3 + R_s_2*k_1_C_s_2_3 - R_s_3*k_1_C_s_3_4 - R_s_3*k_1_C_s_3_5 - R_s_3*k_2_B_1_s_3 - R_s_3*k_2_C_s_1_3 - R_s_3*k_2_C_s_2_3 + R_s_4*k_2_C_s_3_4 + R_s_5*k_2_C_s_3_5

 

 

 

 

Summary of equations for R***

eq5_Rs3_N__U_R_RL;
eq5_Rs3_N__U_2R_RL;
eq5_Rs3_N__U_3R_RL;
eq5_Rs3_N__U_4R_RL;
eq5_Rs3_N__U_5R_RL;

0
0
dcRs3dt_N = R*k_1_B_1_s_3 + R_s_1*k_1_C_s_1_3 + R_s_2*k_1_C_s_2_3 - R_s_3*k_2_B_1_s_3 - R_s_3*k_2_C_s_1_3 - R_s_3*k_2_C_s_2_3
dcRs3dt_N = R*k_1_B_1_s_3 + R_s_1*k_1_C_s_1_3 + R_s_2*k_1_C_s_2_3 - R_s_3*k_1_C_s_3_4 - R_s_3*k_2_B_1_s_3 - R_s_3*k_2_C_s_1_3 - R_s_3*k_2_C_s_2_3 + R_s_4*k_2_C_s_3_4
dcRs3dt_N = R*k_1_B_1_s_3 + R_s_1*k_1_C_s_1_3 + R_s_2*k_1_C_s_2_3 - R_s_3*k_1_C_s_3_4 - R_s_3*k_1_C_s_3_5 - R_s_3*k_2_B_1_s_3 - R_s_3*k_2_C_s_1_3 - R_s_3*k_2_C_s_2_3 + R_s_4*k_2_C_s_3_4 + R_s_5*k_2_C_s_3_5

 

 

 

 

 

 

Back to  Equations for each species

 

 

 

Species: R****

Equations group: 6

 

 

 

 

Equations subgroup: B1

 

 

R <=> R****

(towards species)

 

a forward reaction rate  for the transition

eq6_Bs4_1a:= eq1_Bs4_1a;

Rate_1_B_1_s_4 = R*k_1_B_1_s_4

a partial conversion rate of R**** in this transition

molecularity:=1:
eq6_Bs4_1b:= dcRs4dt_1_B_1_s_4 = molecularity*Rate_1_B_1_s_4

dcRs4dt_1_B_1_s_4 = Rate_1_B_1_s_4

The final form

eq6_Bs4_1c:= eq6_Bs4_1b | eq6_Bs4_1a

dcRs4dt_1_B_1_s_4 = R*k_1_B_1_s_4

 

 

a reverse reaction rate for the transition

eq6_Bs4_2a:= eq1_Bs4_2a;

Rate_2_B_1_s_4 = R_s_4*k_2_B_1_s_4

a partial conversion rate of R**** in this transition

molecularity:=-1:
eq6_Bs4_2b:= dcRs4dt_2_B_1_s_4 = molecularity*Rate_2_B_1_s_4

dcRs4dt_2_B_1_s_4 = -Rate_2_B_1_s_4

The final form

eq6_Bs4_2c:= eq6_Bs4_2b | eq6_Bs4_2a

dcRs4dt_2_B_1_s_4 = -R_s_4*k_2_B_1_s_4

 

 

 

Equations subgroup: C

 

R* <=> R**** 

(towards species)

 

a forward reaction rate  for the transition

eq6_Cs14_1a:= eq3_Cs14_1a

Rate_1_C_s_1_4 = R_s_1*k_1_C_s_1_4

a partial conversion rate of R**** in this transition

molecularity:=1:
eq6_Cs14_1b:= dcRs4dt_1_C_s_1_4 = molecularity*Rate_1_C_s_1_4

dcRs4dt_1_C_s_1_4 = Rate_1_C_s_1_4

The final form

eq6_Cs14_1c:= eq6_Cs14_1b | eq6_Cs14_1a

dcRs4dt_1_C_s_1_4 = R_s_1*k_1_C_s_1_4

 

 

a reverse reaction rate for the transition

eq6_Cs14_2a:= eq3_Cs14_2a

Rate_2_C_s_1_4 = R_s_4*k_2_C_s_1_4

a partial conversion rate of R**** in this transition

molecularity:=-1:
eq6_Cs14_2b:= dcRs4dt_2_C_s_1_4 = molecularity*Rate_2_C_s_1_4

dcRs4dt_2_C_s_1_4 = -Rate_2_C_s_1_4

The final form

eq6_Cs14_2c:= eq6_Cs14_2b | eq6_Cs14_2a

dcRs4dt_2_C_s_1_4 = -R_s_4*k_2_C_s_1_4

 

 

 

 

R** <=> R**** 

(towards species)

 

a forward reaction rate  for the transition

eq6_Cs24_1a:= eq4_Cs24_1a

Rate_1_C_s_2_4 = R_s_2*k_1_C_s_2_4

a partial conversion rate of R**** in this transition

molecularity:=1:
eq6_Cs24_1b:= dcRs4dt_1_C_s_2_4 = molecularity*Rate_1_C_s_2_4

dcRs4dt_1_C_s_2_4 = Rate_1_C_s_2_4

The final form

eq6_Cs24_1c:= eq6_Cs24_1b | eq6_Cs24_1a

dcRs4dt_1_C_s_2_4 = R_s_2*k_1_C_s_2_4

 

 

a reverse reaction rate for the transition

eq6_Cs24_2a:= eq4_Cs24_2a

Rate_2_C_s_2_4 = R_s_4*k_2_C_s_2_4

a partial conversion rate of R**** in this transition

molecularity:=-1:
eq6_Cs24_2b:= dcRs4dt_2_C_s_2_4 = molecularity*Rate_2_C_s_2_4

dcRs4dt_2_C_s_2_4 = -Rate_2_C_s_2_4

The final form

eq6_Cs24_2c:= eq6_Cs24_2b | eq6_Cs24_2a

dcRs4dt_2_C_s_2_4 = -R_s_4*k_2_C_s_2_4

 

 

 

R*** <=> R**** 

(towards species)

 

a forward reaction rate  for the transition

eq6_Cs34_1a:= eq5_Cs34_1a

Rate_1_C_s_3_4 = R_s_3*k_1_C_s_3_4

a partial conversion rate of R**** in this transition

molecularity:=1:
eq6_Cs34_1b:= dcRs4dt_1_C_s_3_4 = molecularity*Rate_1_C_s_3_4

dcRs4dt_1_C_s_3_4 = Rate_1_C_s_3_4

The final form

eq6_Cs34_1c:= eq6_Cs34_1b | eq6_Cs34_1a

dcRs4dt_1_C_s_3_4 = R_s_3*k_1_C_s_3_4

 

 

a reverse reaction rate for the transition

eq6_Cs34_2a:= eq5_Cs34_2a

Rate_2_C_s_3_4 = R_s_4*k_2_C_s_3_4

a partial conversion rate of R**** in this transition

molecularity:=-1:
eq6_Cs34_2b:= dcRs4dt_2_C_s_3_4 = molecularity*Rate_2_C_s_3_4

dcRs4dt_2_C_s_3_4 = -Rate_2_C_s_3_4

The final form

eq6_Cs34_2c:= eq6_Cs34_2b | eq6_Cs34_2a

dcRs4dt_2_C_s_3_4 = -R_s_4*k_2_C_s_3_4

 

 

 

R**** <=> R*****

(away from species)

 

a forward reaction rate  for the transition

eq6_Cs45_1a:= Rate_1_C_s_4_5 = R_s_4 * k_1_C_s_4_5

Rate_1_C_s_4_5 = R_s_4*k_1_C_s_4_5

a partial conversion rate of R** in this transition

molecularity:=-1:
eq6_Cs45_1b:= dcRs4dt_1_C_s_4_5 = molecularity*Rate_1_C_s_4_5

dcRs4dt_1_C_s_4_5 = -Rate_1_C_s_4_5

The final form

eq6_Cs45_1c:= eq6_Cs45_1b | eq6_Cs45_1a

dcRs4dt_1_C_s_4_5 = -R_s_4*k_1_C_s_4_5

 

 

a reverse reaction rate for the transition

eq6_Cs45_2a:= Rate_2_C_s_4_5 = R_s_5 * k_2_C_s_4_5

Rate_2_C_s_4_5 = R_s_5*k_2_C_s_4_5

a partial conversion rate of R** in this transition

molecularity:=1:
eq6_Cs45_2b:= dcRs4dt_2_C_s_4_5 = molecularity*Rate_2_C_s_4_5

dcRs4dt_2_C_s_4_5 = Rate_2_C_s_4_5

The final form

eq6_Cs45_2c:= eq6_Cs45_2b | eq6_Cs45_2a

dcRs4dt_2_C_s_4_5 = R_s_5*k_2_C_s_4_5

 

 

 

Net conversion rate for the species

I will create equations for all five versions of the mechanism.

 

U-R-RL (species not present)

eq6_Rs4_N__U_R_RL:= 0

0

 

U-2R-RL (species not present)

eq6_Rs4_N__U_2R_RL:= 0

0

 

U-3R-RL (species not present)

eq6_Rs4_N__U_3R_RL:= 0

0

 

U-4R-RL

dcRs4dt_N = dcRs4dt_1_B_1_s_4 + dcRs4dt_2_B_1_s_4 + \
dcRs4dt_1_C_s_1_4 + dcRs4dt_2_C_s_1_4 + \
dcRs4dt_1_C_s_2_4 + dcRs4dt_2_C_s_2_4 + \
dcRs4dt_1_C_s_3_4 + dcRs4dt_2_C_s_3_4

dcRs4dt_N = dcRs4dt_1_B_1_s_4 + dcRs4dt_1_C_s_1_4 + dcRs4dt_1_C_s_2_4 + dcRs4dt_1_C_s_3_4 + dcRs4dt_2_B_1_s_4 + dcRs4dt_2_C_s_1_4 + dcRs4dt_2_C_s_2_4 + dcRs4dt_2_C_s_3_4

Substitute

eq6_Rs4_N__U_4R_RL:= % | eq6_Bs4_1c |  eq6_Bs4_2c | \
eq6_Cs14_1c |  eq6_Cs14_2c |  \
eq6_Cs24_1c |   eq6_Cs24_2c |  \
eq6_Cs34_1c |   eq6_Cs34_2c ;

dcRs4dt_N = R*k_1_B_1_s_4 + R_s_1*k_1_C_s_1_4 + R_s_2*k_1_C_s_2_4 + R_s_3*k_1_C_s_3_4 - R_s_4*k_2_B_1_s_4 - R_s_4*k_2_C_s_1_4 - R_s_4*k_2_C_s_2_4 - R_s_4*k_2_C_s_3_4

 

 

 

U-5R-RL

dcRs4dt_N = dcRs4dt_1_B_1_s_4 + dcRs4dt_2_B_1_s_4 + \
dcRs4dt_1_C_s_1_4 + dcRs4dt_2_C_s_1_4 + \
dcRs4dt_1_C_s_2_4 + dcRs4dt_2_C_s_2_4 + \
dcRs4dt_1_C_s_3_4 + dcRs4dt_2_C_s_3_4 + \
dcRs4dt_1_C_s_4_5 + dcRs4dt_2_C_s_4_5

dcRs4dt_N = dcRs4dt_1_B_1_s_4 + dcRs4dt_1_C_s_1_4 + dcRs4dt_1_C_s_2_4 + dcRs4dt_1_C_s_3_4 + dcRs4dt_1_C_s_4_5 + dcRs4dt_2_B_1_s_4 + dcRs4dt_2_C_s_1_4 + dcRs4dt_2_C_s_2_4 + dcRs4dt_2_C_s_3_4 + dcRs4dt_2_C_s_4_5

Substitute

eq6_Rs4_N__U_5R_RL:= % | eq6_Bs4_1c |  eq6_Bs4_2c | \
eq6_Cs14_1c |  eq6_Cs14_2c |  \
eq6_Cs24_1c |   eq6_Cs24_2c |  \
eq6_Cs34_1c |   eq6_Cs34_2c |  \
eq6_Cs45_1c |   eq6_Cs45_2c ;

dcRs4dt_N = R*k_1_B_1_s_4 + R_s_1*k_1_C_s_1_4 + R_s_2*k_1_C_s_2_4 + R_s_3*k_1_C_s_3_4 - R_s_4*k_1_C_s_4_5 - R_s_4*k_2_B_1_s_4 - R_s_4*k_2_C_s_1_4 - R_s_4*k_2_C_s_2_4 - R_s_4*k_2_C_s_3_4 + R_s_5*k_2_C_s_4_5

 

 

 

 

Summary of equations for R****

eq6_Rs4_N__U_R_RL;
eq6_Rs4_N__U_2R_RL;
eq6_Rs4_N__U_3R_RL;
eq6_Rs4_N__U_4R_RL;
eq6_Rs4_N__U_5R_RL;

0
0
0
dcRs4dt_N = R*k_1_B_1_s_4 + R_s_1*k_1_C_s_1_4 + R_s_2*k_1_C_s_2_4 + R_s_3*k_1_C_s_3_4 - R_s_4*k_2_B_1_s_4 - R_s_4*k_2_C_s_1_4 - R_s_4*k_2_C_s_2_4 - R_s_4*k_2_C_s_3_4
dcRs4dt_N = R*k_1_B_1_s_4 + R_s_1*k_1_C_s_1_4 + R_s_2*k_1_C_s_2_4 + R_s_3*k_1_C_s_3_4 - R_s_4*k_1_C_s_4_5 - R_s_4*k_2_B_1_s_4 - R_s_4*k_2_C_s_1_4 - R_s_4*k_2_C_s_2_4 - R_s_4*k_2_C_s_3_4 + R_s_5*k_2_C_s_4_5

 

 

 

 

 

 

 

 

Back to  Equations for each species

 

 

 

Species: R*****

Equations group: 7

 

 

 

 

 

Equations subgroup: B1

 

 

R <=> R*****

(towards species)

 

a forward reaction rate  for the transition

eq7_Bs5_1a:= eq1_Bs5_1a;

Rate_1_B_1_s_5 = R*k_1_B_1_s_5

a partial conversion rate of R**** in this transition

molecularity:=1:
eq7_Bs5_1b:= dcRs5dt_1_B_1_s_5 = molecularity*Rate_1_B_1_s_5

dcRs5dt_1_B_1_s_5 = Rate_1_B_1_s_5

The final form

eq7_Bs5_1c:= eq7_Bs5_1b | eq7_Bs5_1a

dcRs5dt_1_B_1_s_5 = R*k_1_B_1_s_5

 

 

a reverse reaction rate for the transition

eq7_Bs5_2a:= eq1_Bs5_2a;

Rate_2_B_1_s_5 = R_s_5*k_2_B_1_s_5

a partial conversion rate of R**** in this transition

molecularity:=-1:
eq7_Bs5_2b:= dcRs5dt_2_B_1_s_5 = molecularity*Rate_2_B_1_s_5

dcRs5dt_2_B_1_s_5 = -Rate_2_B_1_s_5

The final form

eq7_Bs5_2c:= eq7_Bs5_2b | eq7_Bs5_2a

dcRs5dt_2_B_1_s_5 = -R_s_5*k_2_B_1_s_5

 

 

 

Equations subgroup: C

 

R* <=> R***** 

(towards species)

 

a forward reaction rate  for the transition

eq7_Cs15_1a:= eq3_Cs15_1a

Rate_1_C_s_1_5 = R_s_1*k_1_C_s_1_5

a partial conversion rate of R***** in this transition

molecularity:=1:
eq7_Cs15_1b:= dcRs5dt_1_C_s_1_5 = molecularity*Rate_1_C_s_1_5

dcRs5dt_1_C_s_1_5 = Rate_1_C_s_1_5

The final form

eq7_Cs15_1c:= eq7_Cs15_1b | eq7_Cs15_1a

dcRs5dt_1_C_s_1_5 = R_s_1*k_1_C_s_1_5

 

 

a reverse reaction rate for the transition

eq7_Cs15_2a:= eq3_Cs15_2a

Rate_2_C_s_1_5 = R_s_5*k_2_C_s_1_5

a partial conversion rate of R***** in this transition

molecularity:=-1:
eq7_Cs15_2b:= dcRs5dt_2_C_s_1_5 = molecularity*Rate_2_C_s_1_5

dcRs5dt_2_C_s_1_5 = -Rate_2_C_s_1_5

The final form

eq7_Cs15_2c:= eq7_Cs15_2b | eq7_Cs15_2a

dcRs5dt_2_C_s_1_5 = -R_s_5*k_2_C_s_1_5

 

 

 

R** <=> R***** 

(towards species)

 

a forward reaction rate  for the transition

eq7_Cs25_1a:= eq4_Cs25_1a

Rate_1_C_s_2_5 = R_s_2*k_1_C_s_2_5

a partial conversion rate of R***** in this transition

molecularity:=1:
eq7_Cs25_1b:= dcRs5dt_1_C_s_2_5 = molecularity*Rate_1_C_s_2_5

dcRs5dt_1_C_s_2_5 = Rate_1_C_s_2_5

The final form

eq7_Cs25_1c:= eq7_Cs25_1b | eq7_Cs25_1a

dcRs5dt_1_C_s_2_5 = R_s_2*k_1_C_s_2_5

 

 

a reverse reaction rate for the transition

eq7_Cs25_2a:= eq4_Cs25_2a

Rate_2_C_s_2_5 = R_s_5*k_2_C_s_2_5

a partial conversion rate of R***** in this transition

molecularity:=-1:
eq7_Cs25_2b:= dcRs5dt_2_C_s_2_5 = molecularity*Rate_2_C_s_2_5

dcRs5dt_2_C_s_2_5 = -Rate_2_C_s_2_5

The final form

eq7_Cs25_2c:= eq7_Cs25_2b | eq7_Cs25_2a

dcRs5dt_2_C_s_2_5 = -R_s_5*k_2_C_s_2_5

 

 

 

R*** <=> R***** 

(towards species)

 

a forward reaction rate  for the transition

eq7_Cs35_1a:= eq5_Cs35_1a

Rate_1_C_s_3_5 = R_s_3*k_1_C_s_3_5

a partial conversion rate of R***** in this transition

molecularity:=1:
eq7_Cs35_1b:= dcRs5dt_1_C_s_3_5 = molecularity*Rate_1_C_s_3_5

dcRs5dt_1_C_s_3_5 = Rate_1_C_s_3_5

The final form

eq7_Cs35_1c:= eq7_Cs35_1b | eq7_Cs35_1a

dcRs5dt_1_C_s_3_5 = R_s_3*k_1_C_s_3_5

 

 

a reverse reaction rate for the transition

eq7_Cs35_2a:= eq5_Cs35_2a

Rate_2_C_s_3_5 = R_s_5*k_2_C_s_3_5

a partial conversion rate of R***** in this transition

molecularity:=-1:
eq7_Cs35_2b:= dcRs5dt_2_C_s_3_5 = molecularity*Rate_2_C_s_3_5

dcRs5dt_2_C_s_3_5 = -Rate_2_C_s_3_5

The final form

eq7_Cs35_2c:= eq7_Cs35_2b | eq7_Cs35_2a

dcRs5dt_2_C_s_3_5 = -R_s_5*k_2_C_s_3_5

 

 

 

 

 

R**** <=> R***** 

(towards species)

 

a forward reaction rate  for the transition

eq7_Cs45_1a:= eq6_Cs45_1a

Rate_1_C_s_4_5 = R_s_4*k_1_C_s_4_5

a partial conversion rate of R***** in this transition

molecularity:=1:
eq7_Cs45_1b:= dcRs5dt_1_C_s_4_5 = molecularity*Rate_1_C_s_4_5

dcRs5dt_1_C_s_4_5 = Rate_1_C_s_4_5

The final form

eq7_Cs45_1c:= eq7_Cs45_1b | eq7_Cs45_1a

dcRs5dt_1_C_s_4_5 = R_s_4*k_1_C_s_4_5

 

 

a reverse reaction rate for the transition

eq7_Cs45_2a:= eq6_Cs45_2a

Rate_2_C_s_4_5 = R_s_5*k_2_C_s_4_5

a partial conversion rate of R***** in this transition

molecularity:=-1:
eq7_Cs45_2b:= dcRs5dt_2_C_s_4_5 = molecularity*Rate_2_C_s_4_5

dcRs5dt_2_C_s_4_5 = -Rate_2_C_s_4_5

The final form

eq7_Cs45_2c:= eq7_Cs45_2b | eq7_Cs45_2a

dcRs5dt_2_C_s_4_5 = -R_s_5*k_2_C_s_4_5

 

 

 

Net conversion rate for the species

I will create equations for all five versions of the mechanism.

 

U-R-RL (species not present)

eq7_Rs5_N__U_R_RL:= 0

0

 

U-2R-RL (species not present)

eq7_Rs5_N__U_2R_RL:= 0

0

 

U-3R-RL (species not present)

eq7_Rs5_N__U_3R_RL:= 0

0

 

U-4R-RL

eq7_Rs5_N__U_4R_RL:= 0

0

 

 

 

U-5R-RL

dcRs5dt_N = dcRs5dt_1_B_1_s_5 + dcRs5dt_2_B_1_s_5 + \
dcRs5dt_1_C_s_1_5 + dcRs5dt_2_C_s_1_5 + \
dcRs5dt_1_C_s_2_5 + dcRs5dt_2_C_s_2_5 + \
dcRs5dt_1_C_s_3_5 + dcRs5dt_2_C_s_3_5 + \
dcRs5dt_1_C_s_4_5 + dcRs5dt_2_C_s_4_5

dcRs5dt_N = dcRs5dt_1_B_1_s_5 + dcRs5dt_1_C_s_1_5 + dcRs5dt_1_C_s_2_5 + dcRs5dt_1_C_s_3_5 + dcRs5dt_1_C_s_4_5 + dcRs5dt_2_B_1_s_5 + dcRs5dt_2_C_s_1_5 + dcRs5dt_2_C_s_2_5 + dcRs5dt_2_C_s_3_5 + dcRs5dt_2_C_s_4_5

Substitute

eq7_Rs5_N__U_5R_RL:= % | eq7_Bs5_1c |  eq7_Bs5_2c | \
eq7_Cs15_1c |  eq7_Cs15_2c |  \
eq7_Cs25_1c |   eq7_Cs25_2c |  \
eq7_Cs35_1c |   eq7_Cs35_2c |  \
eq7_Cs45_1c |   eq7_Cs45_2c ;

dcRs5dt_N = R*k_1_B_1_s_5 + R_s_1*k_1_C_s_1_5 + R_s_2*k_1_C_s_2_5 + R_s_3*k_1_C_s_3_5 + R_s_4*k_1_C_s_4_5 - R_s_5*k_2_B_1_s_5 - R_s_5*k_2_C_s_1_5 - R_s_5*k_2_C_s_2_5 - R_s_5*k_2_C_s_3_5 - R_s_5*k_2_C_s_4_5

 

 

 

 

 

Summary of equations for R*****

eq7_Rs5_N__U_R_RL;
eq7_Rs5_N__U_2R_RL;
eq7_Rs5_N__U_3R_RL;
eq7_Rs5_N__U_4R_RL;
eq7_Rs5_N__U_5R_RL;

0
0
0
0
dcRs5dt_N = R*k_1_B_1_s_5 + R_s_1*k_1_C_s_1_5 + R_s_2*k_1_C_s_2_5 + R_s_3*k_1_C_s_3_5 + R_s_4*k_1_C_s_4_5 - R_s_5*k_2_B_1_s_5 - R_s_5*k_2_C_s_1_5 - R_s_5*k_2_C_s_2_5 - R_s_5*k_2_C_s_3_5 - R_s_5*k_2_C_s_4_5

 

 

 

 

 

 

Back to  Equations for each species

 

 

 

 

 

Species: RL*

Equations group: 8

 

 

 

Equations subgroup: B2

 

 

RL <=> RL*

(towards species)

 

a forward reaction rate  for the transition

eq8_B2_1a:= eq2_B2_1a;

Rate_1_B_2 = RL*k_1_B_2

a partial conversion rate of R**** in this transition

molecularity:=1:
eq8_B2_1b:= dcRLsdt_1_B_2 = molecularity*Rate_1_B_2

dcRLsdt_1_B_2 = Rate_1_B_2

The final form

eq8_B2_1c:= eq8_B2_1b | eq8_B2_1a

dcRLsdt_1_B_2 = RL*k_1_B_2

 

 

a reverse reaction rate for the transition

eq8_B2_2a:= eq2_B2_2a;

Rate_2_B_2 = RL_s*k_2_B_2

a partial conversion rate of R**** in this transition

molecularity:=-1:
eq8_B2_2b:= dcRLsdt_2_B_2 = molecularity*Rate_2_B_2

dcRLsdt_2_B_2 = -Rate_2_B_2

The final form

eq8_B2_2c:= eq8_B2_2b | eq8_B2_2a

dcRLsdt_2_B_2 = -RL_s*k_2_B_2

 

Net conversion rate for the species (SAME FOR ALL MODELS)

I will create equations for all five versions of the mechanism.

 

Net rate

dcRLsdt_N  = dcRLsdt_1_B_2 + dcRLsdt_2_B_2

dcRLsdt_N = dcRLsdt_1_B_2 + dcRLsdt_2_B_2

Substitute

eq8_RLs_N:= % | eq8_B2_1c | eq8_B2_2c

dcRLsdt_N = RL*k_1_B_2 - RL_s*k_2_B_2

 

 

 

 

 

Summary of equations for RL*

All versions of mechanism will have it the same

eq8_RLs_N

dcRLsdt_N = RL*k_1_B_2 - RL_s*k_2_B_2

 

 

 

 

Back to  Equations for each species

 

 

Back to Contents

 

 

 

Expression in terms of spin (monomer) concentrations

 

not needed here because we do not have oligomerization reactions.

 

 

Back to Contents

 

 

 

 

 

 

 

 

 

Expession of K matrix for U-1R-RL mechanism

 

 

This is derivation for comparison with existing U-R-RL mechanism matrix: order of species as R, R*, RL, RL*

Derivation with more convenient new order of species is below

 

Summary list of the net rate equations for the mechanism

eq1_R_N__U_R_RL;
eq2_RL_N;
eq3_Rs1_N__U_R_RL;
eq8_RLs_N

dcRdt_N = RL*k_2_A - R*k_1_B_1_s_1 + R_s_1*k_2_B_1_s_1 - L*R*k_1_A
dcRLdt_N = RL_s*k_2_B_2 - RL*k_1_B_2 - RL*k_2_A + L*R*k_1_A
dcRs1dt_N = R*k_1_B_1_s_1 - R_s_1*k_2_B_1_s_1
dcRLsdt_N = RL*k_1_B_2 - RL_s*k_2_B_2

 

 

Assign sequential names to species

feq_1a:= R    = C1;
feq_1b:= R_s_1= C2;
feq_1c:= RL   = C3;
feq_1d:= RL_s   = C4;

R = C1
R_s_1 = C2
RL = C3
RL_s = C4

 

 

Assign the same order to net rate equations

feq_2a:= dcRdt_N      = dC1dt;
feq_2b:= dcRs1dt_N    = dC2dt;
feq_2c:= dcRLdt_N     = dC3dt;
feq_2d:= dcRLsdt_N   = dC4dt;

dcRdt_N = dC1dt
dcRs1dt_N = dC2dt
dcRLdt_N = dC3dt
dcRLsdt_N = dC4dt

 

 

Restate the equations in terms of new sequential species names (rename free ligand concentration too)

R

eq1_R_N__U_R_RL;
feq_3a:= % | feq_1a | feq_1b | feq_1c | feq_2a | feq_2b | feq_2c |  feq_1d |  feq_2d |  L = Leq

dcRdt_N = RL*k_2_A - R*k_1_B_1_s_1 + R_s_1*k_2_B_1_s_1 - L*R*k_1_A
dC1dt = C3*k_2_A - C1*k_1_B_1_s_1 + C2*k_2_B_1_s_1 - C1*Leq*k_1_A

R*

eq3_Rs1_N__U_R_RL;
feq_3b:= % | feq_1a | feq_1b | feq_1c | feq_2a | feq_2b | feq_2c | feq_1d |  feq_2d |   L = Leq

dcRs1dt_N = R*k_1_B_1_s_1 - R_s_1*k_2_B_1_s_1
dC2dt = C1*k_1_B_1_s_1 - C2*k_2_B_1_s_1

RL

eq2_RL_N;
feq_3c:= % | feq_1a | feq_1b | feq_1c | feq_2a | feq_2b | feq_2c |  feq_1d |  feq_2d |  L = Leq

dcRLdt_N = RL_s*k_2_B_2 - RL*k_1_B_2 - RL*k_2_A + L*R*k_1_A
dC3dt = C4*k_2_B_2 - C3*k_1_B_2 - C3*k_2_A + C1*Leq*k_1_A

 

RL*

eq8_RLs_N;
feq_3d:= % | feq_1a | feq_1b | feq_1c | feq_2a | feq_2b | feq_2c |  feq_1d |  feq_2d |  L = Leq

dcRLsdt_N = RL*k_1_B_2 - RL_s*k_2_B_2
dC4dt = C3*k_1_B_2 - C4*k_2_B_2

 

 

Prepare results for transfer to MATLAB

 

(To avoid typing errors when transfering the derived K matrix to MATLAB, I will type it in here and then directly test against the  derivation result. After that the K matrix may be transfered to MATLAB by cut-and-paste  operation of the MuPad output of the following cell)

 

 

See Workflow for accurate extraction of the K matrix

 

 

Simple rules that allow catching mistakes in K matrix derivation:

   

   (1) a sum of each column should be zero (so each constant must appear with both positive and negative sign), and 

 

   (2) each row has to have complete pairs of constants (i.e., if k12

    appears there must be k21 in the same row with an opposite sign and so on).

K:=matrix(4,4,[
[  -k_1_B_1_s_1-Leq*k_1_A,  k_2_B_1_s_1,  k_2_A , 0        ],
[   k_1_B_1_s_1 , -k_2_B_1_s_1, 0, 0      ],
[    Leq*k_1_A, 0,  -k_1_B_2-k_2_A,    k_2_B_2   ],
[   0, 0, k_1_B_2,   -k_2_B_2     ]
])

matrix([[- k_1_B_1_s_1 - Leq*k_1_A, k_2_B_1_s_1, k_2_A, 0], [k_1_B_1_s_1, -k_2_B_1_s_1, 0, 0], [Leq*k_1_A, 0, - k_2_A - k_1_B_2, k_2_B_2], [0, 0, k_1_B_2, -k_2_B_2]])

 

 

Test the K matrix entry

 

Create a column vector of species concentrations

P:=matrix(4,1,[C1, C2, C3, C4])

matrix([[C1], [C2], [C3], [C4]])

 

 

Multiply K and P:

dCdt_manual_input:= K*P

matrix([[C3*k_2_A + C2*k_2_B_1_s_1 - C1*(k_1_B_1_s_1 + Leq*k_1_A)], [C1*k_1_B_1_s_1 - C2*k_2_B_1_s_1], [C4*k_2_B_2 - C3*(k_2_A + k_1_B_2) + C1*Leq*k_1_A], [C3*k_1_B_2 - C4*k_2_B_2]])

 

Collect right-hand-side parts of net rate equations expressed in sequential species names

dCdt_mupad:=matrix(4,1,[ rhs(feq_3a), rhs(feq_3b), rhs(feq_3c), rhs(feq_3d)])

matrix([[C3*k_2_A - C1*k_1_B_1_s_1 + C2*k_2_B_1_s_1 - C1*Leq*k_1_A], [C1*k_1_B_1_s_1 - C2*k_2_B_1_s_1], [C4*k_2_B_2 - C3*k_1_B_2 - C3*k_2_A + C1*Leq*k_1_A], [C3*k_1_B_2 - C4*k_2_B_2]])

 

Compare derivation result to manual input

dCdt_mupad=dCdt_manual_input:
normal(%);
bool(%)

matrix([[C3*k_2_A - C1*k_1_B_1_s_1 + C2*k_2_B_1_s_1 - C1*Leq*k_1_A], [C1*k_1_B_1_s_1 - C2*k_2_B_1_s_1], [C4*k_2_B_2 - C3*k_1_B_2 - C3*k_2_A + C1*Leq*k_1_A], [C3*k_1_B_2 - C4*k_2_B_2]]) = matrix([[C3*k_2_A - C1*k_1_B_1_s_1 + C2*k_2_B_1_s_1 - C1*Leq*k_1_A], [C1*k_1_B_1_s_1 - C2*k_2_B_1_s_1], [C4*k_2_B_2 - C3*k_1_B_2 - C3*k_2_A + C1*Leq*k_1_A], [C3*k_1_B_2 - C4*k_2_B_2]])
TRUE

 

=> Typed K-matrix is correct and corresponds to U-R-RL matrix derived earlier for IDAP if A2 transition is removed.

 

 

 

 

 

 

The following derivation is uses new order of species: R, RL, R*, RL* (to be able to expand mechanism without renumbering equations):

Summary list of the net rate equations for the mechanism

 

Assign sequential names to species

feq_1a:= R       = C1;
feq_1b:= RL      = C2;
feq_1c:= R_s_1   = C3;
feq_1d:= RL_s    = C4;

R = C1
RL = C2
R_s_1 = C3
RL_s = C4

 

 

Assign the same order to net rate equations

feq_2a:= dcRdt_N       = dC1dt;
feq_2b:= dcRLdt_N      = dC2dt;
feq_2c:= dcRs1dt_N     = dC3dt;
feq_2d:= dcRLsdt_N     = dC4dt;

dcRdt_N = dC1dt
dcRLdt_N = dC2dt
dcRs1dt_N = dC3dt
dcRLsdt_N = dC4dt

 

 

Restate the equations in terms of new sequential species names (rename free ligand concentration too)

R

eq1_R_N__U_R_RL:
feq_3a:= % | feq_1a | feq_1b | feq_1c | feq_2a | feq_2b | feq_2c | feq_1d | feq_2d |  L = Leq

dC1dt = C2*k_2_A - C1*k_1_B_1_s_1 + C3*k_2_B_1_s_1 - C1*Leq*k_1_A

RL

eq2_RL_N:
feq_3b:= % | feq_1a | feq_1b | feq_1c | feq_2a | feq_2b | feq_2c  | feq_1d | feq_2d |   L = Leq

dC2dt = C4*k_2_B_2 - C2*k_1_B_2 - C2*k_2_A + C1*Leq*k_1_A

 

R*

eq3_Rs1_N__U_R_RL:
feq_3c:= % | feq_1a | feq_1b | feq_1c | feq_2a | feq_2b | feq_2c  | feq_1d | feq_2d |   L = Leq

dC3dt = C1*k_1_B_1_s_1 - C3*k_2_B_1_s_1

 

 

RL*

eq8_RLs_N:
feq_3d:= % | feq_1a | feq_1b | feq_1c | feq_2a | feq_2b | feq_2c  | feq_1d | feq_2d |   L = Leq

dC4dt = C2*k_1_B_2 - C4*k_2_B_2

 

Prepare results for transfer to MATLAB

 

(To avoid typing errors when transfering the derived K matrix to MATLAB, I will type it in here and then directly test against the  derivation result. After that the K matrix may be transfered to MATLAB by cut-and-paste  operation of the MuPad output of the following cell)

 

 

See Workflow for accurate extraction of the K matrix

 

Simple rules that allow catching mistakes in K matrix derivation:

   

   (1) a sum of each column should be zero (so each constant must appear with both positive and negative sign), and 

 

   (2) each row has to have complete pairs of constants (i.e., if k12

    appears there must be k21 in the same row with an opposite sign and so on).

K:=matrix(4,4,[
[ -k_1_B_1_s_1-Leq*k_1_A, k_2_A,  k_2_B_1_s_1, 0       ],
[   Leq*k_1_A,  -k_1_B_2-k_2_A , 0 , k_2_B_2     ],
[   k_1_B_1_s_1 , 0,  -k_2_B_1_s_1, 0           ],
[   0,  k_1_B_2 , 0, -k_2_B_2     ]
])

matrix([[- k_1_B_1_s_1 - Leq*k_1_A, k_2_A, k_2_B_1_s_1, 0], [Leq*k_1_A, - k_2_A - k_1_B_2, 0, k_2_B_2], [k_1_B_1_s_1, 0, -k_2_B_1_s_1, 0], [0, k_1_B_2, 0, -k_2_B_2]])

 

 

Test the K matrix entry

 

Create a column vector of species concentrations

P:=matrix(4,1,[C1, C2, C3, C4])

matrix([[C1], [C2], [C3], [C4]])

 

 

Multiply K and P:

dCdt_manual_input:= K*P

matrix([[C2*k_2_A + C3*k_2_B_1_s_1 - C1*(k_1_B_1_s_1 + Leq*k_1_A)], [C4*k_2_B_2 - C2*(k_2_A + k_1_B_2) + C1*Leq*k_1_A], [C1*k_1_B_1_s_1 - C3*k_2_B_1_s_1], [C2*k_1_B_2 - C4*k_2_B_2]])

 

Collect right-hand-side parts of net rate equations expressed in sequential species names

dCdt_mupad:=matrix(4,1,[ rhs(feq_3a), rhs(feq_3b), rhs(feq_3c), rhs(feq_3d)])

matrix([[C2*k_2_A - C1*k_1_B_1_s_1 + C3*k_2_B_1_s_1 - C1*Leq*k_1_A], [C4*k_2_B_2 - C2*k_1_B_2 - C2*k_2_A + C1*Leq*k_1_A], [C1*k_1_B_1_s_1 - C3*k_2_B_1_s_1], [C2*k_1_B_2 - C4*k_2_B_2]])

 

Compare derivation result to manual input

dCdt_mupad=dCdt_manual_input:
normal(%);
bool(%)

matrix([[C2*k_2_A - C1*k_1_B_1_s_1 + C3*k_2_B_1_s_1 - C1*Leq*k_1_A], [C4*k_2_B_2 - C2*k_1_B_2 - C2*k_2_A + C1*Leq*k_1_A], [C1*k_1_B_1_s_1 - C3*k_2_B_1_s_1], [C2*k_1_B_2 - C4*k_2_B_2]]) = matrix([[C2*k_2_A - C1*k_1_B_1_s_1 + C3*k_2_B_1_s_1 - C1*Leq*k_1_A], [C4*k_2_B_2 - C2*k_1_B_2 - C2*k_2_A + C1*Leq*k_1_A], [C1*k_1_B_1_s_1 - C3*k_2_B_1_s_1], [C2*k_1_B_2 - C4*k_2_B_2]])
TRUE

 

=> Typed K-matrix is correct.

 

 

 

K matrix for the U-R model with the new species order

K;

matrix([[- k_1_B_1_s_1 - Leq*k_1_A, k_2_A, k_2_B_1_s_1, 0], [Leq*k_1_A, - k_2_A - k_1_B_2, 0, k_2_B_2], [k_1_B_1_s_1, 0, -k_2_B_1_s_1, 0], [0, k_1_B_2, 0, -k_2_B_2]])

 

 

 

 

 

Back to Contents

 

 

 

 

 

 

 

Expression for K matrix of U-2R-RL mechanism

 

 

 

Summary list of the net rate equations for the mechanism

eq1_R_N__U_2R_RL;
eq2_RL_N;
eq3_Rs1_N__U_2R_RL;
eq4_Rs2_N__U_2R_RL;
eq8_RLs_N

dcRdt_N = RL*k_2_A - R*k_1_B_1_s_2 - R*k_1_B_1_s_1 + R_s_1*k_2_B_1_s_1 + R_s_2*k_2_B_1_s_2 - L*R*k_1_A
dcRLdt_N = RL_s*k_2_B_2 - RL*k_1_B_2 - RL*k_2_A + L*R*k_1_A
dcRs1dt_N = R*k_1_B_1_s_1 - R_s_1*k_1_C_s_1_2 - R_s_1*k_2_B_1_s_1 + R_s_2*k_2_C_s_1_2
dcRs2dt_N = R*k_1_B_1_s_2 + R_s_1*k_1_C_s_1_2 - R_s_2*k_2_B_1_s_2 - R_s_2*k_2_C_s_1_2
dcRLsdt_N = RL*k_1_B_2 - RL_s*k_2_B_2

 

 

Assign sequential names to species  R, RL, R*, R**,  R***, R****, R*****, RL* 

feq_1a:= R    = C1;
feq_1b:= RL   = C2;
feq_1c:= R_s_1= C3;
feq_1d:= R_s_2= C4;
feq_1e:= RL_s=  C5;

R = C1
RL = C2
R_s_1 = C3
R_s_2 = C4
RL_s = C5

 

 

 

Assign the same order to net rate equations

feq_2a:= dcRdt_N      = dC1dt;
feq_2b:= dcRLdt_N     = dC2dt;
feq_2c:= dcRs1dt_N    = dC3dt;
feq_2d:= dcRs2dt_N    = dC4dt;
feq_2e:= dcRLsdt_N    = dC5dt;

dcRdt_N = dC1dt
dcRLdt_N = dC2dt
dcRs1dt_N = dC3dt
dcRs2dt_N = dC4dt
dcRLsdt_N = dC5dt

 

 

 

Restate the equations in terms of new sequential species names (rename free ligand concentration too)

R

eq1_R_N__U_2R_RL;
feq_3a:= % | feq_1a | feq_2a | feq_1b | feq_2b | feq_1c | feq_2c | feq_1d | feq_2d | feq_1e | feq_2e |  L = Leq

dcRdt_N = RL*k_2_A - R*k_1_B_1_s_2 - R*k_1_B_1_s_1 + R_s_1*k_2_B_1_s_1 + R_s_2*k_2_B_1_s_2 - L*R*k_1_A
dC1dt = C2*k_2_A - C1*k_1_B_1_s_1 - C1*k_1_B_1_s_2 + C3*k_2_B_1_s_1 + C4*k_2_B_1_s_2 - C1*Leq*k_1_A

RL

eq2_RL_N;
feq_3b:= % | feq_1a | feq_2a | feq_1b | feq_2b | feq_1c | feq_2c | feq_1d | feq_2d | feq_1e | feq_2e |   L = Leq

dcRLdt_N = RL_s*k_2_B_2 - RL*k_1_B_2 - RL*k_2_A + L*R*k_1_A
dC2dt = C5*k_2_B_2 - C2*k_1_B_2 - C2*k_2_A + C1*Leq*k_1_A

R*

eq3_Rs1_N__U_2R_RL;
feq_3c:= % | feq_1a | feq_2a | feq_1b | feq_2b | feq_1c | feq_2c | feq_1d | feq_2d |  feq_1e | feq_2e |  L = Leq

dcRs1dt_N = R*k_1_B_1_s_1 - R_s_1*k_1_C_s_1_2 - R_s_1*k_2_B_1_s_1 + R_s_2*k_2_C_s_1_2
dC3dt = C1*k_1_B_1_s_1 - C3*k_1_C_s_1_2 - C3*k_2_B_1_s_1 + C4*k_2_C_s_1_2

R**

eq4_Rs2_N__U_2R_RL;
feq_3d:= % | feq_1a | feq_2a | feq_1b | feq_2b | feq_1c | feq_2c | feq_1d | feq_2d |  feq_1e | feq_2e |  L = Leq

dcRs2dt_N = R*k_1_B_1_s_2 + R_s_1*k_1_C_s_1_2 - R_s_2*k_2_B_1_s_2 - R_s_2*k_2_C_s_1_2
dC4dt = C1*k_1_B_1_s_2 + C3*k_1_C_s_1_2 - C4*k_2_B_1_s_2 - C4*k_2_C_s_1_2

 

RL*

eq8_RLs_N:
feq_3e:= % | feq_1a | feq_1b | feq_1c | feq_2a | feq_2b | feq_2c  | feq_1d | feq_2d |  feq_1e | feq_2e |   L = Leq

dC5dt = C2*k_1_B_2 - C5*k_2_B_2

 

 

 

 

Prepare results for transfer to MATLAB

 

(To avoid typing errors when transfering the derived K matrix to MATLAB, I will type it in here and then directly test against the  derivation result. After that the K matrix may be transfered to MATLAB by cut-and-paste  operation of the MuPad output of the following cell)

 

 

 

See Workflow for accurate extraction of the K matrix

 

Simple rules that allow catching mistakes in K matrix derivation:

   

   (1) a sum of each column should be zero (so each constant must appear with both positive and negative sign), and 

 

   (2) each row has to have complete pairs of constants (i.e., if k12

    appears there must be k21 in the same row with an opposite sign and so on).

K:=matrix(5,5,[
[ -k_1_B_1_s_1-k_1_B_1_s_2-Leq*k_1_A,  k_2_A , k_2_B_1_s_1, k_2_B_1_s_2, 0    ],
[  Leq*k_1_A, -k_1_B_2-k_2_A, 0, 0,  k_2_B_2       ],
[  k_1_B_1_s_1 , 0, -k_1_C_s_1_2-k_2_B_1_s_1, k_2_C_s_1_2, 0          ],
[  k_1_B_1_s_2 , 0, k_1_C_s_1_2, -k_2_B_1_s_2-k_2_C_s_1_2, 0         ],
[   0, k_1_B_2, 0, 0,  -k_2_B_2  ]
])

matrix([[- k_1_B_1_s_1 - k_1_B_1_s_2 - Leq*k_1_A, k_2_A, k_2_B_1_s_1, k_2_B_1_s_2, 0], [Leq*k_1_A, - k_2_A - k_1_B_2, 0, 0, k_2_B_2], [k_1_B_1_s_1, 0, - k_1_C_s_1_2 - k_2_B_1_s_1, k_2_C_s_1_2, 0], [k_1_B_1_s_2, 0, k_1_C_s_1_2, - k_2_B_1_s_2 - k_2_C_s_1_2, 0], [0, k_1_B_2, 0, 0, -k_2_B_2]])

 

 

Test the K matrix entry

 

Create a column vector of species concentrations

P:=matrix(5,1,[C1, C2, C3, C4, C5])

matrix([[C1], [C2], [C3], [C4], [C5]])

 

 

Multiply K and P:

dCdt_manual_input:= K*P

matrix([[C2*k_2_A + C3*k_2_B_1_s_1 + C4*k_2_B_1_s_2 - C1*(k_1_B_1_s_1 + k_1_B_1_s_2 + Leq*k_1_A)], [C5*k_2_B_2 - C2*(k_2_A + k_1_B_2) + C1*Leq*k_1_A], [C1*k_1_B_1_s_1 + C4*k_2_C_s_1_2 - C3*(k_1_C_s_1_2 + k_2_B_1_s_1)], [C1*k_1_B_1_s_2 + C3*k_1_C_s_1_2 - C4*(k_2_B_1_s_2 + k_2_C_s_1_2)], [C2*k_1_B_2 - C5*k_2_B_2]])

 

Collect right-hand-side parts of net rate equations expressed in sequential species names

dCdt_mupad:=matrix(5,1,[ rhs(feq_3a), rhs(feq_3b), rhs(feq_3c), rhs(feq_3d), rhs(feq_3e)])

matrix([[C2*k_2_A - C1*k_1_B_1_s_1 - C1*k_1_B_1_s_2 + C3*k_2_B_1_s_1 + C4*k_2_B_1_s_2 - C1*Leq*k_1_A], [C5*k_2_B_2 - C2*k_1_B_2 - C2*k_2_A + C1*Leq*k_1_A], [C1*k_1_B_1_s_1 - C3*k_1_C_s_1_2 - C3*k_2_B_1_s_1 + C4*k_2_C_s_1_2], [C1*k_1_B_1_s_2 + C3*k_1_C_s_1_2 - C4*k_2_B_1_s_2 - C4*k_2_C_s_1_2], [C2*k_1_B_2 - C5*k_2_B_2]])

 

Compare derivation result to manual input

dCdt_mupad=dCdt_manual_input:
normal(%);
bool(%)

matrix([[C2*k_2_A - C1*k_1_B_1_s_1 - C1*k_1_B_1_s_2 + C3*k_2_B_1_s_1 + C4*k_2_B_1_s_2 - C1*Leq*k_1_A], [C5*k_2_B_2 - C2*k_1_B_2 - C2*k_2_A + C1*Leq*k_1_A], [C1*k_1_B_1_s_1 - C3*k_1_C_s_1_2 - C3*k_2_B_1_s_1 + C4*k_2_C_s_1_2], [C1*k_1_B_1_s_2 + C3*k_1_C_s_1_2 - C4*k_2_B_1_s_2 - C4*k_2_C_s_1_2], [C2*k_1_B_2 - C5*k_2_B_2]]) = matrix([[C2*k_2_A - C1*k_1_B_1_s_1 - C1*k_1_B_1_s_2 + C3*k_2_B_1_s_1 + C4*k_2_B_1_s_2 - C1*Leq*k_1_A], [C5*k_2_B_2 - C2*k_1_B_2 - C2*k_2_A + C1*Leq*k_1_A], [C1*k_1_B_1_s_1 - C3*k_1_C_s_1_2 - C3*k_2_B_1_s_1 + C4*k_2_C_s_1_2], [C1*k_1_B_1_s_2 + C3*k_1_C_s_1_2 - C4*k_2_B_1_s_2 - C4*k_2_C_s_1_2], [C2*k_1_B_2 - C5*k_2_B_2]])
TRUE

=> Typed K-matrix is correct.

 

 

 

 

Final expression for U-2R-RL kinetic matrix

K

matrix([[- k_1_B_1_s_1 - k_1_B_1_s_2 - Leq*k_1_A, k_2_A, k_2_B_1_s_1, k_2_B_1_s_2, 0], [Leq*k_1_A, - k_2_A - k_1_B_2, 0, 0, k_2_B_2], [k_1_B_1_s_1, 0, - k_1_C_s_1_2 - k_2_B_1_s_1, k_2_C_s_1_2, 0], [k_1_B_1_s_2, 0, k_1_C_s_1_2, - k_2_B_1_s_2 - k_2_C_s_1_2, 0], [0, k_1_B_2, 0, 0, -k_2_B_2]])

 

 

 

 

Back to Contents

 

 

 

 

 

 

Derivation of K matrix for U-3R-RL mechanism

 

 

 

Summary list of the net rate equations for the mechanism

eq1_R_N__U_3R_RL;
eq2_RL_N;
eq3_Rs1_N__U_3R_RL;
eq4_Rs2_N__U_3R_RL;
eq5_Rs3_N__U_3R_RL;
eq8_RLs_N

dcRdt_N = RL*k_2_A - R*k_1_B_1_s_2 - R*k_1_B_1_s_3 - R*k_1_B_1_s_1 + R_s_1*k_2_B_1_s_1 + R_s_2*k_2_B_1_s_2 + R_s_3*k_2_B_1_s_3 - L*R*k_1_A
dcRLdt_N = RL_s*k_2_B_2 - RL*k_1_B_2 - RL*k_2_A + L*R*k_1_A
dcRs1dt_N = R*k_1_B_1_s_1 - R_s_1*k_1_C_s_1_2 - R_s_1*k_1_C_s_1_3 - R_s_1*k_2_B_1_s_1 + R_s_2*k_2_C_s_1_2 + R_s_3*k_2_C_s_1_3
dcRs2dt_N = R*k_1_B_1_s_2 + R_s_1*k_1_C_s_1_2 - R_s_2*k_1_C_s_2_3 - R_s_2*k_2_B_1_s_2 - R_s_2*k_2_C_s_1_2 + R_s_3*k_2_C_s_2_3
dcRs3dt_N = R*k_1_B_1_s_3 + R_s_1*k_1_C_s_1_3 + R_s_2*k_1_C_s_2_3 - R_s_3*k_2_B_1_s_3 - R_s_3*k_2_C_s_1_3 - R_s_3*k_2_C_s_2_3
dcRLsdt_N = RL*k_1_B_2 - RL_s*k_2_B_2

 

Assign sequential names to species

feq_1a:= R    = C1;
feq_1b:= RL   = C2;
feq_1c:= R_s_1= C3;
feq_1d:= R_s_2= C4;
feq_1e:= R_s_3= C5;
feq_1f:= RL_s = C6;

R = C1
RL = C2
R_s_1 = C3
R_s_2 = C4
R_s_3 = C5
RL_s = C6

Assign the same order to net rate equations

feq_2a:= dcRdt_N      = dC1dt;
feq_2b:= dcRLdt_N     = dC2dt;
feq_2c:= dcRs1dt_N    = dC3dt;
feq_2d:= dcRs2dt_N    = dC4dt;
feq_2e:= dcRs3dt_N    = dC5dt;
feq_2f:= dcRLsdt_N    = dC6dt;

dcRdt_N = dC1dt
dcRLdt_N = dC2dt
dcRs1dt_N = dC3dt
dcRs2dt_N = dC4dt
dcRs3dt_N = dC5dt
dcRLsdt_N = dC6dt

 

 

Restate the equations in terms of new sequential species names (rename free ligand concentration too)

R

eq1_R_N__U_3R_RL;
feq_3a:= % | feq_1a | feq_2a | feq_1b | feq_2b | feq_1c | feq_2c | feq_1d | feq_2d | feq_1e | feq_2e \
| feq_1f | feq_2f |  L = Leq

dcRdt_N = RL*k_2_A - R*k_1_B_1_s_2 - R*k_1_B_1_s_3 - R*k_1_B_1_s_1 + R_s_1*k_2_B_1_s_1 + R_s_2*k_2_B_1_s_2 + R_s_3*k_2_B_1_s_3 - L*R*k_1_A
dC1dt = C2*k_2_A - C1*k_1_B_1_s_1 - C1*k_1_B_1_s_2 - C1*k_1_B_1_s_3 + C3*k_2_B_1_s_1 + C4*k_2_B_1_s_2 + C5*k_2_B_1_s_3 - C1*Leq*k_1_A

RL

eq2_RL_N;
feq_3b:= % | feq_1a | feq_2a | feq_1b | feq_2b | feq_1c | feq_2c | feq_1d | feq_2d | feq_1e | feq_2e \
| feq_1f | feq_2f |  L = Leq

dcRLdt_N = RL_s*k_2_B_2 - RL*k_1_B_2 - RL*k_2_A + L*R*k_1_A
dC2dt = C6*k_2_B_2 - C2*k_1_B_2 - C2*k_2_A + C1*Leq*k_1_A

R*

eq3_Rs1_N__U_3R_RL;
feq_3c:= % |  feq_1a | feq_2a | feq_1b | feq_2b | feq_1c | feq_2c | feq_1d | feq_2d | feq_1e | feq_2e \
| feq_1f | feq_2f |  L = Leq

dcRs1dt_N = R*k_1_B_1_s_1 - R_s_1*k_1_C_s_1_2 - R_s_1*k_1_C_s_1_3 - R_s_1*k_2_B_1_s_1 + R_s_2*k_2_C_s_1_2 + R_s_3*k_2_C_s_1_3
dC3dt = C1*k_1_B_1_s_1 - C3*k_1_C_s_1_2 - C3*k_1_C_s_1_3 - C3*k_2_B_1_s_1 + C4*k_2_C_s_1_2 + C5*k_2_C_s_1_3

R**

eq4_Rs2_N__U_3R_RL;
feq_3d:= % |  feq_1a | feq_2a | feq_1b | feq_2b | feq_1c | feq_2c | feq_1d | feq_2d | feq_1e | feq_2e \
| feq_1f | feq_2f |  L = Leq

dcRs2dt_N = R*k_1_B_1_s_2 + R_s_1*k_1_C_s_1_2 - R_s_2*k_1_C_s_2_3 - R_s_2*k_2_B_1_s_2 - R_s_2*k_2_C_s_1_2 + R_s_3*k_2_C_s_2_3
dC4dt = C1*k_1_B_1_s_2 + C3*k_1_C_s_1_2 - C4*k_1_C_s_2_3 - C4*k_2_B_1_s_2 - C4*k_2_C_s_1_2 + C5*k_2_C_s_2_3

R***

eq5_Rs3_N__U_3R_RL;
feq_3e:= % |  feq_1a | feq_2a | feq_1b | feq_2b | feq_1c | feq_2c | feq_1d | feq_2d | feq_1e | feq_2e \
| feq_1f | feq_2f |  L = Leq

dcRs3dt_N = R*k_1_B_1_s_3 + R_s_1*k_1_C_s_1_3 + R_s_2*k_1_C_s_2_3 - R_s_3*k_2_B_1_s_3 - R_s_3*k_2_C_s_1_3 - R_s_3*k_2_C_s_2_3
dC5dt = C1*k_1_B_1_s_3 + C3*k_1_C_s_1_3 + C4*k_1_C_s_2_3 - C5*k_2_B_1_s_3 - C5*k_2_C_s_1_3 - C5*k_2_C_s_2_3

 

RL*

eq8_RLs_N:
feq_3f:= % | feq_1a | feq_1b | feq_1c | feq_2a | feq_2b | feq_2c  | feq_1d | feq_2d |  feq_1e | feq_2e \
| feq_1f | feq_2f |  L = Leq

dC6dt = C2*k_1_B_2 - C6*k_2_B_2

 

 

 

 

Prepare results for transfer to MATLAB

 

(To avoid typing errors when transfering the derived K matrix to MATLAB, I will type it in here and then directly test against the  derivation result. After that the K matrix may be transfered to MATLAB by cut-and-paste  operation of the MuPad output of the following cell)

 

See Workflow for accurate extraction of the K matrix

 

Simple rules that allow catching mistakes in K matrix derivation:

   

   (1) a sum of each column should be zero (so each constant must appear with both positive and negative sign), and 

 

   (2) each row has to have complete pairs of constants (i.e., if k12

    appears there must be k21 in the same row with an opposite sign and so on).

K:=matrix(6,6,[
[ -k_1_B_1_s_1-k_1_B_1_s_2-k_1_B_1_s_3-Leq*k_1_A,  k_2_A ,  k_2_B_1_s_1, k_2_B_1_s_2,  k_2_B_1_s_3, 0                     ],
[  Leq*k_1_A,  -k_1_B_2-k_2_A, 0, 0, 0, k_2_B_2                        ],
[  k_1_B_1_s_1, 0,   -k_1_C_s_1_2-k_1_C_s_1_3-k_2_B_1_s_1,  k_2_C_s_1_2,   k_2_C_s_1_3,0        ],
[  k_1_B_1_s_2, 0, k_1_C_s_1_2, -k_1_C_s_2_3-k_2_B_1_s_2-k_2_C_s_1_2,  k_2_C_s_2_3, 0      ],
[  k_1_B_1_s_3, 0,  k_1_C_s_1_3, k_1_C_s_2_3,  -k_2_B_1_s_3-k_2_C_s_1_3-k_2_C_s_2_3, 0     ],
[   0,    k_1_B_2, 0, 0, 0, -k_2_B_2                ]
])

matrix([[- k_1_B_1_s_1 - k_1_B_1_s_2 - k_1_B_1_s_3 - Leq*k_1_A, k_2_A, k_2_B_1_s_1, k_2_B_1_s_2, k_2_B_1_s_3, 0], [Leq*k_1_A, - k_2_A - k_1_B_2, 0, 0, 0, k_2_B_2], [k_1_B_1_s_1, 0, - k_1_C_s_1_2 - k_1_C_s_1_3 - k_2_B_1_s_1, k_2_C_s_1_2, k_2_C_s_1_3, 0], [k_1_B_1_s_2, 0, k_1_C_s_1_2, - k_1_C_s_2_3 - k_2_B_1_s_2 - k_2_C_s_1_2, k_2_C_s_2_3, 0], [k_1_B_1_s_3, 0, k_1_C_s_1_3, k_1_C_s_2_3, - k_2_B_1_s_3 - k_2_C_s_1_3 - k_2_C_s_2_3, 0], [0, k_1_B_2, 0, 0, 0, -k_2_B_2]])

 

Test the K matrix entry

 

Create a column vector of species concentrations

P:=matrix(6,1,[C1, C2, C3, C4, C5, C6])

matrix([[C1], [C2], [C3], [C4], [C5], [C6]])

 

 

Multiply K and P:

dCdt_manual_input:= K*P

matrix([[C2*k_2_A + C3*k_2_B_1_s_1 + C4*k_2_B_1_s_2 + C5*k_2_B_1_s_3 - C1*(k_1_B_1_s_1 + k_1_B_1_s_2 + k_1_B_1_s_3 + Leq*k_1_A)], [C6*k_2_B_2 - C2*(k_2_A + k_1_B_2) + C1*Leq*k_1_A], [C1*k_1_B_1_s_1 + C4*k_2_C_s_1_2 + C5*k_2_C_s_1_3 - C3*(k_1_C_s_1_2 + k_1_C_s_1_3 + k_2_B_1_s_1)], [C1*k_1_B_1_s_2 + C3*k_1_C_s_1_2 + C5*k_2_C_s_2_3 - C4*(k_1_C_s_2_3 + k_2_B_1_s_2 + k_2_C_s_1_2)], [C1*k_1_B_1_s_3 + C3*k_1_C_s_1_3 + C4*k_1_C_s_2_3 - C5*(k_2_B_1_s_3 + k_2_C_s_1_3 + k_2_C_s_2_3)], [C2*k_1_B_2 - C6*k_2_B_2]])

 

Collect right-hand-side parts of net rate equations expressed in sequential species names

dCdt_mupad:=matrix(6,1,[ rhs(feq_3a), rhs(feq_3b), rhs(feq_3c), rhs(feq_3d), rhs(feq_3e), rhs(feq_3f)])

matrix([[C2*k_2_A - C1*k_1_B_1_s_1 - C1*k_1_B_1_s_2 - C1*k_1_B_1_s_3 + C3*k_2_B_1_s_1 + C4*k_2_B_1_s_2 + C5*k_2_B_1_s_3 - C1*Leq*k_1_A], [C6*k_2_B_2 - C2*k_1_B_2 - C2*k_2_A + C1*Leq*k_1_A], [C1*k_1_B_1_s_1 - C3*k_1_C_s_1_2 - C3*k_1_C_s_1_3 - C3*k_2_B_1_s_1 + C4*k_2_C_s_1_2 + C5*k_2_C_s_1_3], [C1*k_1_B_1_s_2 + C3*k_1_C_s_1_2 - C4*k_1_C_s_2_3 - C4*k_2_B_1_s_2 - C4*k_2_C_s_1_2 + C5*k_2_C_s_2_3], [C1*k_1_B_1_s_3 + C3*k_1_C_s_1_3 + C4*k_1_C_s_2_3 - C5*k_2_B_1_s_3 - C5*k_2_C_s_1_3 - C5*k_2_C_s_2_3], [C2*k_1_B_2 - C6*k_2_B_2]])

 

Compare derivation result to manual input

dCdt_mupad=dCdt_manual_input:
normal(%);
bool(%)

matrix([[C2*k_2_A - C1*k_1_B_1_s_1 - C1*k_1_B_1_s_2 - C1*k_1_B_1_s_3 + C3*k_2_B_1_s_1 + C4*k_2_B_1_s_2 + C5*k_2_B_1_s_3 - C1*Leq*k_1_A], [C6*k_2_B_2 - C2*k_1_B_2 - C2*k_2_A + C1*Leq*k_1_A], [C1*k_1_B_1_s_1 - C3*k_1_C_s_1_2 - C3*k_1_C_s_1_3 - C3*k_2_B_1_s_1 + C4*k_2_C_s_1_2 + C5*k_2_C_s_1_3], [C1*k_1_B_1_s_2 + C3*k_1_C_s_1_2 - C4*k_1_C_s_2_3 - C4*k_2_B_1_s_2 - C4*k_2_C_s_1_2 + C5*k_2_C_s_2_3], [C1*k_1_B_1_s_3 + C3*k_1_C_s_1_3 + C4*k_1_C_s_2_3 - C5*k_2_B_1_s_3 - C5*k_2_C_s_1_3 - C5*k_2_C_s_2_3], [C2*k_1_B_2 - C6*k_2_B_2]]) = matrix([[C2*k_2_A - C1*k_1_B_1_s_1 - C1*k_1_B_1_s_2 - C1*k_1_B_1_s_3 + C3*k_2_B_1_s_1 + C4*k_2_B_1_s_2 + C5*k_2_B_1_s_3 - C1*Leq*k_1_A], [C6*k_2_B_2 - C2*k_1_B_2 - C2*k_2_A + C1*Leq*k_1_A], [C1*k_1_B_1_s_1 - C3*k_1_C_s_1_2 - C3*k_1_C_s_1_3 - C3*k_2_B_1_s_1 + C4*k_2_C_s_1_2 + C5*k_2_C_s_1_3], [C1*k_1_B_1_s_2 + C3*k_1_C_s_1_2 - C4*k_1_C_s_2_3 - C4*k_2_B_1_s_2 - C4*k_2_C_s_1_2 + C5*k_2_C_s_2_3], [C1*k_1_B_1_s_3 + C3*k_1_C_s_1_3 + C4*k_1_C_s_2_3 - C5*k_2_B_1_s_3 - C5*k_2_C_s_1_3 - C5*k_2_C_s_2_3], [C2*k_1_B_2 - C6*k_2_B_2]])
TRUE

=> Typed K-matrix is correct.

 

 

 

Final expression for U-3R-RL kinetic matrix

K

matrix([[- k_1_B_1_s_1 - k_1_B_1_s_2 - k_1_B_1_s_3 - Leq*k_1_A, k_2_A, k_2_B_1_s_1, k_2_B_1_s_2, k_2_B_1_s_3, 0], [Leq*k_1_A, - k_2_A - k_1_B_2, 0, 0, 0, k_2_B_2], [k_1_B_1_s_1, 0, - k_1_C_s_1_2 - k_1_C_s_1_3 - k_2_B_1_s_1, k_2_C_s_1_2, k_2_C_s_1_3, 0], [k_1_B_1_s_2, 0, k_1_C_s_1_2, - k_1_C_s_2_3 - k_2_B_1_s_2 - k_2_C_s_1_2, k_2_C_s_2_3, 0], [k_1_B_1_s_3, 0, k_1_C_s_1_3, k_1_C_s_2_3, - k_2_B_1_s_3 - k_2_C_s_1_3 - k_2_C_s_2_3, 0], [0, k_1_B_2, 0, 0, 0, -k_2_B_2]])

 

 

 

 

 

Back to Contents

 

 

 

 

Derivation of K matrix for U-4R-RL mechanism

 

 

 

Summary list of the net rate equations for the mechanism

eq1_R_N__U_4R_RL;
eq2_RL_N;
eq3_Rs1_N__U_4R_RL;
eq4_Rs2_N__U_4R_RL;
eq5_Rs3_N__U_4R_RL;
eq6_Rs4_N__U_4R_RL;
eq8_RLs_N

dcRdt_N = RL*k_2_A - R*k_1_B_1_s_2 - R*k_1_B_1_s_3 - R*k_1_B_1_s_4 - R*k_1_B_1_s_1 + R_s_1*k_2_B_1_s_1 + R_s_2*k_2_B_1_s_2 + R_s_3*k_2_B_1_s_3 + R_s_4*k_2_B_1_s_4 - L*R*k_1_A
dcRLdt_N = RL_s*k_2_B_2 - RL*k_1_B_2 - RL*k_2_A + L*R*k_1_A
dcRs1dt_N = R*k_1_B_1_s_1 - R_s_1*k_1_C_s_1_2 - R_s_1*k_1_C_s_1_3 - R_s_1*k_1_C_s_1_4 - R_s_1*k_2_B_1_s_1 + R_s_2*k_2_C_s_1_2 + R_s_3*k_2_C_s_1_3 + R_s_4*k_2_C_s_1_4
dcRs2dt_N = R*k_1_B_1_s_2 + R_s_1*k_1_C_s_1_2 - R_s_2*k_1_C_s_2_3 - R_s_2*k_1_C_s_2_4 - R_s_2*k_2_B_1_s_2 - R_s_2*k_2_C_s_1_2 + R_s_3*k_2_C_s_2_3 + R_s_4*k_2_C_s_2_4
dcRs3dt_N = R*k_1_B_1_s_3 + R_s_1*k_1_C_s_1_3 + R_s_2*k_1_C_s_2_3 - R_s_3*k_1_C_s_3_4 - R_s_3*k_2_B_1_s_3 - R_s_3*k_2_C_s_1_3 - R_s_3*k_2_C_s_2_3 + R_s_4*k_2_C_s_3_4
dcRs4dt_N = R*k_1_B_1_s_4 + R_s_1*k_1_C_s_1_4 + R_s_2*k_1_C_s_2_4 + R_s_3*k_1_C_s_3_4 - R_s_4*k_2_B_1_s_4 - R_s_4*k_2_C_s_1_4 - R_s_4*k_2_C_s_2_4 - R_s_4*k_2_C_s_3_4
dcRLsdt_N = RL*k_1_B_2 - RL_s*k_2_B_2

 

 

 

 

 

Assign sequential names to species

feq_1a:= R    = C1;
feq_1b:= RL   = C2;
feq_1c:= R_s_1= C3;
feq_1d:= R_s_2= C4;
feq_1e:= R_s_3= C5;
feq_1f:= R_s_4= C6;
feq_1g:= RL_s = C7;

R = C1
RL = C2
R_s_1 = C3
R_s_2 = C4
R_s_3 = C5
R_s_4 = C6
RL_s = C7

Assign the same order to net rate equations

feq_2a:= dcRdt_N      = dC1dt;
feq_2b:= dcRLdt_N     = dC2dt;
feq_2c:= dcRs1dt_N    = dC3dt;
feq_2d:= dcRs2dt_N    = dC4dt;
feq_2e:= dcRs3dt_N    = dC5dt;
feq_2f:= dcRs4dt_N    = dC6dt;
feq_2g:= dcRLsdt_N    = dC7dt;

dcRdt_N = dC1dt
dcRLdt_N = dC2dt
dcRs1dt_N = dC3dt
dcRs2dt_N = dC4dt
dcRs3dt_N = dC5dt
dcRs4dt_N = dC6dt
dcRLsdt_N = dC7dt

 

 

 

Restate the equations in terms of new sequential species names (rename free ligand concentration too)

R

eq1_R_N__U_4R_RL;
feq_3a:= % | feq_1a | feq_2a | feq_1b | feq_2b | feq_1c | feq_2c | feq_1d | feq_2d | feq_1e | feq_2e \
| feq_1f | feq_2f | feq_1g | feq_2g |  L = Leq

dcRdt_N = RL*k_2_A - R*k_1_B_1_s_2 - R*k_1_B_1_s_3 - R*k_1_B_1_s_4 - R*k_1_B_1_s_1 + R_s_1*k_2_B_1_s_1 + R_s_2*k_2_B_1_s_2 + R_s_3*k_2_B_1_s_3 + R_s_4*k_2_B_1_s_4 - L*R*k_1_A
dC1dt = C2*k_2_A - C1*k_1_B_1_s_1 - C1*k_1_B_1_s_2 - C1*k_1_B_1_s_3 - C1*k_1_B_1_s_4 + C3*k_2_B_1_s_1 + C4*k_2_B_1_s_2 + C5*k_2_B_1_s_3 + C6*k_2_B_1_s_4 - C1*Leq*k_1_A

RL

eq2_RL_N;
feq_3b:= % | feq_1a | feq_2a | feq_1b | feq_2b | feq_1c | feq_2c | feq_1d | feq_2d | feq_1e | feq_2e \
| feq_1f | feq_2f | feq_1g | feq_2g |  L = Leq

dcRLdt_N = RL_s*k_2_B_2 - RL*k_1_B_2 - RL*k_2_A + L*R*k_1_A
dC2dt = C7*k_2_B_2 - C2*k_1_B_2 - C2*k_2_A + C1*Leq*k_1_A

R*

eq3_Rs1_N__U_4R_RL;
feq_3c:= % |  feq_1a | feq_2a | feq_1b | feq_2b | feq_1c | feq_2c | feq_1d | feq_2d | feq_1e | feq_2e \
| feq_1f | feq_2f | feq_1g | feq_2g |  L = Leq

dcRs1dt_N = R*k_1_B_1_s_1 - R_s_1*k_1_C_s_1_2 - R_s_1*k_1_C_s_1_3 - R_s_1*k_1_C_s_1_4 - R_s_1*k_2_B_1_s_1 + R_s_2*k_2_C_s_1_2 + R_s_3*k_2_C_s_1_3 + R_s_4*k_2_C_s_1_4
dC3dt = C1*k_1_B_1_s_1 - C3*k_1_C_s_1_2 - C3*k_1_C_s_1_3 - C3*k_1_C_s_1_4 - C3*k_2_B_1_s_1 + C4*k_2_C_s_1_2 + C5*k_2_C_s_1_3 + C6*k_2_C_s_1_4

R**

eq4_Rs2_N__U_4R_RL;
feq_3d:= % |  feq_1a | feq_2a | feq_1b | feq_2b | feq_1c | feq_2c | feq_1d | feq_2d | feq_1e | feq_2e \
| feq_1f | feq_2f | feq_1g | feq_2g |  L = Leq

dcRs2dt_N = R*k_1_B_1_s_2 + R_s_1*k_1_C_s_1_2 - R_s_2*k_1_C_s_2_3 - R_s_2*k_1_C_s_2_4 - R_s_2*k_2_B_1_s_2 - R_s_2*k_2_C_s_1_2 + R_s_3*k_2_C_s_2_3 + R_s_4*k_2_C_s_2_4
dC4dt = C1*k_1_B_1_s_2 + C3*k_1_C_s_1_2 - C4*k_1_C_s_2_3 - C4*k_1_C_s_2_4 - C4*k_2_B_1_s_2 - C4*k_2_C_s_1_2 + C5*k_2_C_s_2_3 + C6*k_2_C_s_2_4

R***

eq5_Rs3_N__U_4R_RL;
feq_3e:= % |  feq_1a | feq_2a | feq_1b | feq_2b | feq_1c | feq_2c | feq_1d | feq_2d | feq_1e | feq_2e \
| feq_1f | feq_2f | feq_1g | feq_2g |  L = Leq

dcRs3dt_N = R*k_1_B_1_s_3 + R_s_1*k_1_C_s_1_3 + R_s_2*k_1_C_s_2_3 - R_s_3*k_1_C_s_3_4 - R_s_3*k_2_B_1_s_3 - R_s_3*k_2_C_s_1_3 - R_s_3*k_2_C_s_2_3 + R_s_4*k_2_C_s_3_4
dC5dt = C1*k_1_B_1_s_3 + C3*k_1_C_s_1_3 + C4*k_1_C_s_2_3 - C5*k_1_C_s_3_4 - C5*k_2_B_1_s_3 - C5*k_2_C_s_1_3 - C5*k_2_C_s_2_3 + C6*k_2_C_s_3_4

R****

eq6_Rs4_N__U_4R_RL;
feq_3f:= % |  feq_1a | feq_2a | feq_1b | feq_2b | feq_1c | feq_2c | feq_1d | feq_2d | feq_1e | feq_2e \
| feq_1f | feq_2f | feq_1g | feq_2g |  L = Leq

dcRs4dt_N = R*k_1_B_1_s_4 + R_s_1*k_1_C_s_1_4 + R_s_2*k_1_C_s_2_4 + R_s_3*k_1_C_s_3_4 - R_s_4*k_2_B_1_s_4 - R_s_4*k_2_C_s_1_4 - R_s_4*k_2_C_s_2_4 - R_s_4*k_2_C_s_3_4
dC6dt = C1*k_1_B_1_s_4 + C3*k_1_C_s_1_4 + C4*k_1_C_s_2_4 + C5*k_1_C_s_3_4 - C6*k_2_B_1_s_4 - C6*k_2_C_s_1_4 - C6*k_2_C_s_2_4 - C6*k_2_C_s_3_4

RL*

eq8_RLs_N:
feq_3g:=  % |  feq_1a | feq_2a | feq_1b | feq_2b | feq_1c | feq_2c | feq_1d | feq_2d | feq_1e | feq_2e \
| feq_1f | feq_2f | feq_1g | feq_2g |  L = Leq

dC7dt = C2*k_1_B_2 - C7*k_2_B_2

 

 

 

Prepare results for transfer to MATLAB

 

(To avoid typing errors when transfering the derived K matrix to MATLAB, I will type it in here and then directly test against the  derivation result. After that the K matrix may be transfered to MATLAB by cut-and-paste  operation of the MuPad output of the following cell)

 

See Workflow for accurate extraction of the K matrix

 

 

Simple rules that allow catching mistakes in K matrix derivation:

   

   (1) a sum of each column should be zero (so each constant must appear with both positive and negative sign), and 

 

   (2) each row has to have complete pairs of constants (i.e., if k12

    appears there must be k21 in the same row with an opposite sign and so on).

K:=matrix(7,7,[
[ -k_1_B_1_s_1-k_1_B_1_s_2-k_1_B_1_s_3-k_1_B_1_s_4-Leq*k_1_A, k_2_A, k_2_B_1_s_1, k_2_B_1_s_2, k_2_B_1_s_3, k_2_B_1_s_4, 0       ],
[  Leq*k_1_A,   -k_1_B_2-k_2_A, 0,0,0,0,  k_2_B_2                                    ],
[  k_1_B_1_s_1, 0, -k_1_C_s_1_2-k_1_C_s_1_3-k_1_C_s_1_4-k_2_B_1_s_1, k_2_C_s_1_2,  k_2_C_s_1_3, k_2_C_s_1_4, 0       ],
[ k_1_B_1_s_2, 0,  k_1_C_s_1_2, -k_1_C_s_2_3-k_1_C_s_2_4-k_2_B_1_s_2-k_2_C_s_1_2, k_2_C_s_2_3, k_2_C_s_2_4 , 0                                         ],
[ k_1_B_1_s_3, 0, k_1_C_s_1_3, k_1_C_s_2_3, -k_1_C_s_3_4-k_2_B_1_s_3-k_2_C_s_1_3-k_2_C_s_2_3, k_2_C_s_3_4, 0],
[ k_1_B_1_s_4, 0, k_1_C_s_1_4, k_1_C_s_2_4, k_1_C_s_3_4, -k_2_B_1_s_4-k_2_C_s_1_4-k_2_C_s_2_4-k_2_C_s_3_4, 0                                                          ],
[  0, k_1_B_2, 0, 0, 0, 0, -k_2_B_2         ]
])

matrix([[- k_1_B_1_s_1 - k_1_B_1_s_2 - k_1_B_1_s_3 - k_1_B_1_s_4 - Leq*k_1_A, k_2_A, k_2_B_1_s_1, k_2_B_1_s_2, k_2_B_1_s_3, k_2_B_1_s_4, 0], [Leq*k_1_A, - k_2_A - k_1_B_2, 0, 0, 0, 0, k_2_B_2], [k_1_B_1_s_1, 0, - k_1_C_s_1_2 - k_1_C_s_1_3 - k_1_C_s_1_4 - k_2_B_1_s_1, k_2_C_s_1_2, k_2_C_s_1_3, k_2_C_s_1_4, 0], [k_1_B_1_s_2, 0, k_1_C_s_1_2, - k_1_C_s_2_3 - k_1_C_s_2_4 - k_2_B_1_s_2 - k_2_C_s_1_2, k_2_C_s_2_3, k_2_C_s_2_4, 0], [k_1_B_1_s_3, 0, k_1_C_s_1_3, k_1_C_s_2_3, - k_1_C_s_3_4 - k_2_B_1_s_3 - k_2_C_s_1_3 - k_2_C_s_2_3, k_2_C_s_3_4, 0], [k_1_B_1_s_4, 0, k_1_C_s_1_4, k_1_C_s_2_4, k_1_C_s_3_4, - k_2_B_1_s_4 - k_2_C_s_1_4 - k_2_C_s_2_4 - k_2_C_s_3_4, 0], [0, k_1_B_2, 0, 0, 0, 0, -k_2_B_2]])

 

Test the K matrix entry

 

Create a column vector of species concentrations

P:=matrix(7,1,[C1, C2, C3, C4, C5, C6, C7])

matrix([[C1], [C2], [C3], [C4], [C5], [C6], [C7]])

 

 

Multiply K and P:

dCdt_manual_input:= K*P

matrix([[C2*k_2_A + C3*k_2_B_1_s_1 + C4*k_2_B_1_s_2 + C5*k_2_B_1_s_3 + C6*k_2_B_1_s_4 - C1*(k_1_B_1_s_1 + k_1_B_1_s_2 + k_1_B_1_s_3 + k_1_B_1_s_4 + Leq*k_1_A)], [C7*k_2_B_2 - C2*(k_2_A + k_1_B_2) + C1*Leq*k_1_A], [C1*k_1_B_1_s_1 + C4*k_2_C_s_1_2 + C5*k_2_C_s_1_3 + C6*k_2_C_s_1_4 - C3*(k_1_C_s_1_2 + k_1_C_s_1_3 + k_1_C_s_1_4 + k_2_B_1_s_1)], [C1*k_1_B_1_s_2 + C3*k_1_C_s_1_2 + C5*k_2_C_s_2_3 + C6*k_2_C_s_2_4 - C4*(k_1_C_s_2_3 + k_1_C_s_2_4 + k_2_B_1_s_2 + k_2_C_s_1_2)], [C1*k_1_B_1_s_3 + C3*k_1_C_s_1_3 + C4*k_1_C_s_2_3 + C6*k_2_C_s_3_4 - C5*(k_1_C_s_3_4 + k_2_B_1_s_3 + k_2_C_s_1_3 + k_2_C_s_2_3)], [C1*k_1_B_1_s_4 + C3*k_1_C_s_1_4 + C4*k_1_C_s_2_4 + C5*k_1_C_s_3_4 - C6*(k_2_B_1_s_4 + k_2_C_s_1_4 + k_2_C_s_2_4 + k_2_C_s_3_4)], [C2*k_1_B_2 - C7*k_2_B_2]])

 

Collect right-hand-side parts of net rate equations expressed in sequential species names

dCdt_mupad:=matrix(7,1,[ rhs(feq_3a), rhs(feq_3b), rhs(feq_3c), rhs(feq_3d), rhs(feq_3e), rhs(feq_3f), rhs(feq_3g)])

matrix([[C2*k_2_A - C1*k_1_B_1_s_1 - C1*k_1_B_1_s_2 - C1*k_1_B_1_s_3 - C1*k_1_B_1_s_4 + C3*k_2_B_1_s_1 + C4*k_2_B_1_s_2 + C5*k_2_B_1_s_3 + C6*k_2_B_1_s_4 - C1*Leq*k_1_A], [C7*k_2_B_2 - C2*k_1_B_2 - C2*k_2_A + C1*Leq*k_1_A], [C1*k_1_B_1_s_1 - C3*k_1_C_s_1_2 - C3*k_1_C_s_1_3 - C3*k_1_C_s_1_4 - C3*k_2_B_1_s_1 + C4*k_2_C_s_1_2 + C5*k_2_C_s_1_3 + C6*k_2_C_s_1_4], [C1*k_1_B_1_s_2 + C3*k_1_C_s_1_2 - C4*k_1_C_s_2_3 - C4*k_1_C_s_2_4 - C4*k_2_B_1_s_2 - C4*k_2_C_s_1_2 + C5*k_2_C_s_2_3 + C6*k_2_C_s_2_4], [C1*k_1_B_1_s_3 + C3*k_1_C_s_1_3 + C4*k_1_C_s_2_3 - C5*k_1_C_s_3_4 - C5*k_2_B_1_s_3 - C5*k_2_C_s_1_3 - C5*k_2_C_s_2_3 + C6*k_2_C_s_3_4], [C1*k_1_B_1_s_4 + C3*k_1_C_s_1_4 + C4*k_1_C_s_2_4 + C5*k_1_C_s_3_4 - C6*k_2_B_1_s_4 - C6*k_2_C_s_1_4 - C6*k_2_C_s_2_4 - C6*k_2_C_s_3_4], [C2*k_1_B_2 - C7*k_2_B_2]])

 

Compare derivation result to manual input

dCdt_mupad=dCdt_manual_input:
normal(%);
bool(%)

matrix([[C2*k_2_A - C1*k_1_B_1_s_1 - C1*k_1_B_1_s_2 - C1*k_1_B_1_s_3 - C1*k_1_B_1_s_4 + C3*k_2_B_1_s_1 + C4*k_2_B_1_s_2 + C5*k_2_B_1_s_3 + C6*k_2_B_1_s_4 - C1*Leq*k_1_A], [C7*k_2_B_2 - C2*k_1_B_2 - C2*k_2_A + C1*Leq*k_1_A], [C1*k_1_B_1_s_1 - C3*k_1_C_s_1_2 - C3*k_1_C_s_1_3 - C3*k_1_C_s_1_4 - C3*k_2_B_1_s_1 + C4*k_2_C_s_1_2 + C5*k_2_C_s_1_3 + C6*k_2_C_s_1_4], [C1*k_1_B_1_s_2 + C3*k_1_C_s_1_2 - C4*k_1_C_s_2_3 - C4*k_1_C_s_2_4 - C4*k_2_B_1_s_2 - C4*k_2_C_s_1_2 + C5*k_2_C_s_2_3 + C6*k_2_C_s_2_4], [C1*k_1_B_1_s_3 + C3*k_1_C_s_1_3 + C4*k_1_C_s_2_3 - C5*k_1_C_s_3_4 - C5*k_2_B_1_s_3 - C5*k_2_C_s_1_3 - C5*k_2_C_s_2_3 + C6*k_2_C_s_3_4], [C1*k_1_B_1_s_4 + C3*k_1_C_s_1_4 + C4*k_1_C_s_2_4 + C5*k_1_C_s_3_4 - C6*k_2_B_1_s_4 - C6*k_2_C_s_1_4 - C6*k_2_C_s_2_4 - C6*k_2_C_s_3_4], [C2*k_1_B_2 - C7*k_2_B_2]]) = matrix([[C2*k_2_A - C1*k_1_B_1_s_1 - C1*k_1_B_1_s_2 - C1*k_1_B_1_s_3 - C1*k_1_B_1_s_4 + C3*k_2_B_1_s_1 + C4*k_2_B_1_s_2 + C5*k_2_B_1_s_3 + C6*k_2_B_1_s_4 - C1*Leq*k_1_A], [C7*k_2_B_2 - C2*k_1_B_2 - C2*k_2_A + C1*Leq*k_1_A], [C1*k_1_B_1_s_1 - C3*k_1_C_s_1_2 - C3*k_1_C_s_1_3 - C3*k_1_C_s_1_4 - C3*k_2_B_1_s_1 + C4*k_2_C_s_1_2 + C5*k_2_C_s_1_3 + C6*k_2_C_s_1_4], [C1*k_1_B_1_s_2 + C3*k_1_C_s_1_2 - C4*k_1_C_s_2_3 - C4*k_1_C_s_2_4 - C4*k_2_B_1_s_2 - C4*k_2_C_s_1_2 + C5*k_2_C_s_2_3 + C6*k_2_C_s_2_4], [C1*k_1_B_1_s_3 + C3*k_1_C_s_1_3 + C4*k_1_C_s_2_3 - C5*k_1_C_s_3_4 - C5*k_2_B_1_s_3 - C5*k_2_C_s_1_3 - C5*k_2_C_s_2_3 + C6*k_2_C_s_3_4], [C1*k_1_B_1_s_4 + C3*k_1_C_s_1_4 + C4*k_1_C_s_2_4 + C5*k_1_C_s_3_4 - C6*k_2_B_1_s_4 - C6*k_2_C_s_1_4 - C6*k_2_C_s_2_4 - C6*k_2_C_s_3_4], [C2*k_1_B_2 - C7*k_2_B_2]])
TRUE

=> Typed K-matrix is correct.

 

 

 

Final expression for U-4R -RLkinetic matrix

K

matrix([[- k_1_B_1_s_1 - k_1_B_1_s_2 - k_1_B_1_s_3 - k_1_B_1_s_4 - Leq*k_1_A, k_2_A, k_2_B_1_s_1, k_2_B_1_s_2, k_2_B_1_s_3, k_2_B_1_s_4, 0], [Leq*k_1_A, - k_2_A - k_1_B_2, 0, 0, 0, 0, k_2_B_2], [k_1_B_1_s_1, 0, - k_1_C_s_1_2 - k_1_C_s_1_3 - k_1_C_s_1_4 - k_2_B_1_s_1, k_2_C_s_1_2, k_2_C_s_1_3, k_2_C_s_1_4, 0], [k_1_B_1_s_2, 0, k_1_C_s_1_2, - k_1_C_s_2_3 - k_1_C_s_2_4 - k_2_B_1_s_2 - k_2_C_s_1_2, k_2_C_s_2_3, k_2_C_s_2_4, 0], [k_1_B_1_s_3, 0, k_1_C_s_1_3, k_1_C_s_2_3, - k_1_C_s_3_4 - k_2_B_1_s_3 - k_2_C_s_1_3 - k_2_C_s_2_3, k_2_C_s_3_4, 0], [k_1_B_1_s_4, 0, k_1_C_s_1_4, k_1_C_s_2_4, k_1_C_s_3_4, - k_2_B_1_s_4 - k_2_C_s_1_4 - k_2_C_s_2_4 - k_2_C_s_3_4, 0], [0, k_1_B_2, 0, 0, 0, 0, -k_2_B_2]])

 

 

 

 

Back to Contents

 

 

 

 

Derivation of K matrix for U-5R-RL mechanism

 

 

 

Summary list of the net rate equations for the mechanism

eq1_R_N__U_5R_RL;
eq2_RL_N;
eq3_Rs1_N__U_5R_RL;
eq4_Rs2_N__U_5R_RL;
eq5_Rs3_N__U_5R_RL;
eq6_Rs4_N__U_5R_RL;
eq7_Rs5_N__U_5R_RL;
eq8_RLs_N

dcRdt_N = RL*k_2_A - R*k_1_B_1_s_2 - R*k_1_B_1_s_3 - R*k_1_B_1_s_4 - R*k_1_B_1_s_5 - R*k_1_B_1_s_1 + R_s_1*k_2_B_1_s_1 + R_s_2*k_2_B_1_s_2 + R_s_3*k_2_B_1_s_3 + R_s_4*k_2_B_1_s_4 + R_s_5*k_2_B_1_s_5 - L*R*k_1_A
dcRLdt_N = RL_s*k_2_B_2 - RL*k_1_B_2 - RL*k_2_A + L*R*k_1_A
dcRs1dt_N = R*k_1_B_1_s_1 - R_s_1*k_1_C_s_1_2 - R_s_1*k_1_C_s_1_3 - R_s_1*k_1_C_s_1_4 - R_s_1*k_1_C_s_1_5 - R_s_1*k_2_B_1_s_1 + R_s_2*k_2_C_s_1_2 + R_s_3*k_2_C_s_1_3 + R_s_4*k_2_C_s_1_4 + R_s_5*k_2_C_s_1_5
dcRs2dt_N = R*k_1_B_1_s_2 + R_s_1*k_1_C_s_1_2 - R_s_2*k_1_C_s_2_3 - R_s_2*k_1_C_s_2_4 - R_s_2*k_1_C_s_2_5 - R_s_2*k_2_B_1_s_2 - R_s_2*k_2_C_s_1_2 + R_s_3*k_2_C_s_2_3 + R_s_4*k_2_C_s_2_4 + R_s_5*k_2_C_s_2_5
dcRs3dt_N = R*k_1_B_1_s_3 + R_s_1*k_1_C_s_1_3 + R_s_2*k_1_C_s_2_3 - R_s_3*k_1_C_s_3_4 - R_s_3*k_1_C_s_3_5 - R_s_3*k_2_B_1_s_3 - R_s_3*k_2_C_s_1_3 - R_s_3*k_2_C_s_2_3 + R_s_4*k_2_C_s_3_4 + R_s_5*k_2_C_s_3_5
dcRs4dt_N = R*k_1_B_1_s_4 + R_s_1*k_1_C_s_1_4 + R_s_2*k_1_C_s_2_4 + R_s_3*k_1_C_s_3_4 - R_s_4*k_1_C_s_4_5 - R_s_4*k_2_B_1_s_4 - R_s_4*k_2_C_s_1_4 - R_s_4*k_2_C_s_2_4 - R_s_4*k_2_C_s_3_4 + R_s_5*k_2_C_s_4_5
dcRs5dt_N = R*k_1_B_1_s_5 + R_s_1*k_1_C_s_1_5 + R_s_2*k_1_C_s_2_5 + R_s_3*k_1_C_s_3_5 + R_s_4*k_1_C_s_4_5 - R_s_5*k_2_B_1_s_5 - R_s_5*k_2_C_s_1_5 - R_s_5*k_2_C_s_2_5 - R_s_5*k_2_C_s_3_5 - R_s_5*k_2_C_s_4_5
dcRLsdt_N = RL*k_1_B_2 - RL_s*k_2_B_2

Assign sequential names to species

feq_1a:= R    = C1;
feq_1b:= RL   = C2;
feq_1c:= R_s_1= C3;
feq_1d:= R_s_2= C4;
feq_1e:= R_s_3= C5;
feq_1f:= R_s_4= C6;
feq_1g:= R_s_5= C7;
feq_1h:= RL_s = C8;

R = C1
RL = C2
R_s_1 = C3
R_s_2 = C4
R_s_3 = C5
R_s_4 = C6
R_s_5 = C7
RL_s = C8

Assign the same order to net rate equations

feq_2a:= dcRdt_N      = dC1dt;
feq_2b:= dcRLdt_N     = dC2dt;
feq_2c:= dcRs1dt_N    = dC3dt;
feq_2d:= dcRs2dt_N    = dC4dt;
feq_2e:= dcRs3dt_N    = dC5dt;
feq_2f:= dcRs4dt_N    = dC6dt;
feq_2g:= dcRs5dt_N    = dC7dt;
feq_2h:= dcRLsdt_N    = dC8dt;

dcRdt_N = dC1dt
dcRLdt_N = dC2dt
dcRs1dt_N = dC3dt
dcRs2dt_N = dC4dt
dcRs3dt_N = dC5dt
dcRs4dt_N = dC6dt
dcRs5dt_N = dC7dt
dcRLsdt_N = dC8dt

 

 

 

Restate the equations in terms of new sequential species names (rename free ligand concentration too)

R

eq1_R_N__U_5R_RL;
feq_3a:= % | feq_1a | feq_2a | feq_1b | feq_2b | feq_1c | feq_2c | feq_1d | feq_2d | feq_1e | feq_2e | feq_1f | feq_2f  \
| feq_1g | feq_2g |  feq_1h | feq_2h |  L = Leq

dcRdt_N = RL*k_2_A - R*k_1_B_1_s_2 - R*k_1_B_1_s_3 - R*k_1_B_1_s_4 - R*k_1_B_1_s_5 - R*k_1_B_1_s_1 + R_s_1*k_2_B_1_s_1 + R_s_2*k_2_B_1_s_2 + R_s_3*k_2_B_1_s_3 + R_s_4*k_2_B_1_s_4 + R_s_5*k_2_B_1_s_5 - L*R*k_1_A
dC1dt = C2*k_2_A - C1*k_1_B_1_s_1 - C1*k_1_B_1_s_2 - C1*k_1_B_1_s_3 - C1*k_1_B_1_s_4 - C1*k_1_B_1_s_5 + C3*k_2_B_1_s_1 + C4*k_2_B_1_s_2 + C5*k_2_B_1_s_3 + C6*k_2_B_1_s_4 + C7*k_2_B_1_s_5 - C1*Leq*k_1_A

RL

eq2_RL_N;
feq_3b:=   % | feq_1a | feq_2a | feq_1b | feq_2b | feq_1c | feq_2c | feq_1d | feq_2d | feq_1e | feq_2e | feq_1f | feq_2f  \
| feq_1g | feq_2g |  feq_1h | feq_2h |  L = Leq

dcRLdt_N = RL_s*k_2_B_2 - RL*k_1_B_2 - RL*k_2_A + L*R*k_1_A
dC2dt = C8*k_2_B_2 - C2*k_1_B_2 - C2*k_2_A + C1*Leq*k_1_A

R*

eq3_Rs1_N__U_5R_RL;
feq_3c:=  % | feq_1a | feq_2a | feq_1b | feq_2b | feq_1c | feq_2c | feq_1d | feq_2d | feq_1e | feq_2e | feq_1f | feq_2f  \
| feq_1g | feq_2g |  feq_1h | feq_2h |  L = Leq

dcRs1dt_N = R*k_1_B_1_s_1 - R_s_1*k_1_C_s_1_2 - R_s_1*k_1_C_s_1_3 - R_s_1*k_1_C_s_1_4 - R_s_1*k_1_C_s_1_5 - R_s_1*k_2_B_1_s_1 + R_s_2*k_2_C_s_1_2 + R_s_3*k_2_C_s_1_3 + R_s_4*k_2_C_s_1_4 + R_s_5*k_2_C_s_1_5
dC3dt = C1*k_1_B_1_s_1 - C3*k_1_C_s_1_2 - C3*k_1_C_s_1_3 - C3*k_1_C_s_1_4 - C3*k_1_C_s_1_5 - C3*k_2_B_1_s_1 + C4*k_2_C_s_1_2 + C5*k_2_C_s_1_3 + C6*k_2_C_s_1_4 + C7*k_2_C_s_1_5

R**

eq4_Rs2_N__U_5R_RL;
feq_3d:=   % | feq_1a | feq_2a | feq_1b | feq_2b | feq_1c | feq_2c | feq_1d | feq_2d | feq_1e | feq_2e | feq_1f | feq_2f  \
| feq_1g | feq_2g |  feq_1h | feq_2h |  L = Leq

dcRs2dt_N = R*k_1_B_1_s_2 + R_s_1*k_1_C_s_1_2 - R_s_2*k_1_C_s_2_3 - R_s_2*k_1_C_s_2_4 - R_s_2*k_1_C_s_2_5 - R_s_2*k_2_B_1_s_2 - R_s_2*k_2_C_s_1_2 + R_s_3*k_2_C_s_2_3 + R_s_4*k_2_C_s_2_4 + R_s_5*k_2_C_s_2_5
dC4dt = C1*k_1_B_1_s_2 + C3*k_1_C_s_1_2 - C4*k_1_C_s_2_3 - C4*k_1_C_s_2_4 - C4*k_1_C_s_2_5 - C4*k_2_B_1_s_2 - C4*k_2_C_s_1_2 + C5*k_2_C_s_2_3 + C6*k_2_C_s_2_4 + C7*k_2_C_s_2_5

R***

eq5_Rs3_N__U_5R_RL;
feq_3e:=  % | feq_1a | feq_2a | feq_1b | feq_2b | feq_1c | feq_2c | feq_1d | feq_2d | feq_1e | feq_2e | feq_1f | feq_2f  \
| feq_1g | feq_2g |  feq_1h | feq_2h |  L = Leq

dcRs3dt_N = R*k_1_B_1_s_3 + R_s_1*k_1_C_s_1_3 + R_s_2*k_1_C_s_2_3 - R_s_3*k_1_C_s_3_4 - R_s_3*k_1_C_s_3_5 - R_s_3*k_2_B_1_s_3 - R_s_3*k_2_C_s_1_3 - R_s_3*k_2_C_s_2_3 + R_s_4*k_2_C_s_3_4 + R_s_5*k_2_C_s_3_5
dC5dt = C1*k_1_B_1_s_3 + C3*k_1_C_s_1_3 + C4*k_1_C_s_2_3 - C5*k_1_C_s_3_4 - C5*k_1_C_s_3_5 - C5*k_2_B_1_s_3 - C5*k_2_C_s_1_3 - C5*k_2_C_s_2_3 + C6*k_2_C_s_3_4 + C7*k_2_C_s_3_5

R****

eq6_Rs4_N__U_5R_RL;
feq_3f:=   % | feq_1a | feq_2a | feq_1b | feq_2b | feq_1c | feq_2c | feq_1d | feq_2d | feq_1e | feq_2e | feq_1f | feq_2f  \
| feq_1g | feq_2g |  feq_1h | feq_2h |  L = Leq

dcRs4dt_N = R*k_1_B_1_s_4 + R_s_1*k_1_C_s_1_4 + R_s_2*k_1_C_s_2_4 + R_s_3*k_1_C_s_3_4 - R_s_4*k_1_C_s_4_5 - R_s_4*k_2_B_1_s_4 - R_s_4*k_2_C_s_1_4 - R_s_4*k_2_C_s_2_4 - R_s_4*k_2_C_s_3_4 + R_s_5*k_2_C_s_4_5
dC6dt = C1*k_1_B_1_s_4 + C3*k_1_C_s_1_4 + C4*k_1_C_s_2_4 + C5*k_1_C_s_3_4 - C6*k_1_C_s_4_5 - C6*k_2_B_1_s_4 - C6*k_2_C_s_1_4 - C6*k_2_C_s_2_4 - C6*k_2_C_s_3_4 + C7*k_2_C_s_4_5

 

R*****

eq7_Rs5_N__U_5R_RL;
feq_3g:=  % | feq_1a | feq_2a | feq_1b | feq_2b | feq_1c | feq_2c | feq_1d | feq_2d | feq_1e | feq_2e | feq_1f | feq_2f  \
| feq_1g | feq_2g |  feq_1h | feq_2h |  L = Leq

dcRs5dt_N = R*k_1_B_1_s_5 + R_s_1*k_1_C_s_1_5 + R_s_2*k_1_C_s_2_5 + R_s_3*k_1_C_s_3_5 + R_s_4*k_1_C_s_4_5 - R_s_5*k_2_B_1_s_5 - R_s_5*k_2_C_s_1_5 - R_s_5*k_2_C_s_2_5 - R_s_5*k_2_C_s_3_5 - R_s_5*k_2_C_s_4_5
dC7dt = C1*k_1_B_1_s_5 + C3*k_1_C_s_1_5 + C4*k_1_C_s_2_5 + C5*k_1_C_s_3_5 + C6*k_1_C_s_4_5 - C7*k_2_B_1_s_5 - C7*k_2_C_s_1_5 - C7*k_2_C_s_2_5 - C7*k_2_C_s_3_5 - C7*k_2_C_s_4_5

RL*

eq8_RLs_N:
feq_3h:=  % | feq_1a | feq_2a | feq_1b | feq_2b | feq_1c | feq_2c | feq_1d | feq_2d | feq_1e | feq_2e | feq_1f | feq_2f  \
| feq_1g | feq_2g |  feq_1h | feq_2h |  L = Leq

dC8dt = C2*k_1_B_2 - C8*k_2_B_2

 

 

 

Prepare results for transfer to MATLAB

 

(To avoid typing errors when transfering the derived K matrix to MATLAB, I will type it in here and then directly test against the  derivation result. After that the K matrix may be transfered to MATLAB by cut-and-paste  operation of the MuPad output of the following cell)

 

 

 

See Workflow for accurate extraction of the K matrix

 

 

 

Simple rules that allow catching mistakes in K matrix derivation:

   

   (1) a sum of each column should be zero (so each constant must appear with both positive and negative sign), and 

 

   (2) each row has to have complete pairs of constants (i.e., if k12

    appears there must be k21 in the same row with an opposite sign and so on).

K:=matrix(8,8,[
[   -Leq*k_1_A-k_1_B_1_s_1-k_1_B_1_s_2-k_1_B_1_s_3-k_1_B_1_s_4-k_1_B_1_s_5,  k_2_A, k_2_B_1_s_1, k_2_B_1_s_2, k_2_B_1_s_3, k_2_B_1_s_4, k_2_B_1_s_5 ,0                        ],
[  Leq*k_1_A,  -k_1_B_2-k_2_A, 0, 0, 0, 0, 0,  k_2_B_2                           ],
[  k_1_B_1_s_1,0, -k_1_C_s_1_2 -k_1_C_s_1_3 -k_1_C_s_1_4 -k_1_C_s_1_5 -k_2_B_1_s_1, k_2_C_s_1_2, k_2_C_s_1_3, k_2_C_s_1_4, k_2_C_s_1_5, 0      ],
[ k_1_B_1_s_2,0, k_1_C_s_1_2, -k_1_C_s_2_3 -k_1_C_s_2_4 -k_1_C_s_2_5 -k_2_B_1_s_2 -k_2_C_s_1_2, k_2_C_s_2_3, k_2_C_s_2_4, k_2_C_s_2_5, 0                             ],
[ k_1_B_1_s_3,0, k_1_C_s_1_3, k_1_C_s_2_3, -k_1_C_s_3_4 -k_1_C_s_3_5 -k_2_B_1_s_3 -k_2_C_s_1_3 -k_2_C_s_2_3, k_2_C_s_3_4, k_2_C_s_3_5,0                         ],
[ k_1_B_1_s_4,0, k_1_C_s_1_4, k_1_C_s_2_4, k_1_C_s_3_4, -k_1_C_s_4_5 -k_2_B_1_s_4 -k_2_C_s_1_4 -k_2_C_s_2_4 -k_2_C_s_3_4, k_2_C_s_4_5,0                             ],
[ k_1_B_1_s_5,0, k_1_C_s_1_5, k_1_C_s_2_5, k_1_C_s_3_5, k_1_C_s_4_5, -k_2_B_1_s_5 -k_2_C_s_1_5 -k_2_C_s_2_5 -k_2_C_s_3_5 -k_2_C_s_4_5,0                             ],
[ 0, k_1_B_2,0,0,0,0,0, -k_2_B_2 ]
])

matrix([[- k_1_B_1_s_1 - k_1_B_1_s_2 - k_1_B_1_s_3 - k_1_B_1_s_4 - k_1_B_1_s_5 - Leq*k_1_A, k_2_A, k_2_B_1_s_1, k_2_B_1_s_2, k_2_B_1_s_3, k_2_B_1_s_4, k_2_B_1_s_5, 0], [Leq*k_1_A, - k_2_A - k_1_B_2, 0, 0, 0, 0, 0, k_2_B_2], [k_1_B_1_s_1, 0, - k_1_C_s_1_2 - k_1_C_s_1_3 - k_1_C_s_1_4 - k_1_C_s_1_5 - k_2_B_1_s_1, k_2_C_s_1_2, k_2_C_s_1_3, k_2_C_s_1_4, k_2_C_s_1_5, 0], [k_1_B_1_s_2, 0, k_1_C_s_1_2, - k_1_C_s_2_3 - k_1_C_s_2_4 - k_1_C_s_2_5 - k_2_B_1_s_2 - k_2_C_s_1_2, k_2_C_s_2_3, k_2_C_s_2_4, k_2_C_s_2_5, 0], [k_1_B_1_s_3, 0, k_1_C_s_1_3, k_1_C_s_2_3, - k_1_C_s_3_4 - k_1_C_s_3_5 - k_2_B_1_s_3 - k_2_C_s_1_3 - k_2_C_s_2_3, k_2_C_s_3_4, k_2_C_s_3_5, 0], [k_1_B_1_s_4, 0, k_1_C_s_1_4, k_1_C_s_2_4, k_1_C_s_3_4, - k_1_C_s_4_5 - k_2_B_1_s_4 - k_2_C_s_1_4 - k_2_C_s_2_4 - k_2_C_s_3_4, k_2_C_s_4_5, 0], [k_1_B_1_s_5, 0, k_1_C_s_1_5, k_1_C_s_2_5, k_1_C_s_3_5, k_1_C_s_4_5, - k_2_B_1_s_5 - k_2_C_s_1_5 - k_2_C_s_2_5 - k_2_C_s_3_5 - k_2_C_s_4_5, 0], [0, k_1_B_2, 0, 0, 0, 0, 0, -k_2_B_2]])

 

 

 

Test the K matrix entry

 

Create a column vector of species concentrations

P:=matrix(8,1,[C1, C2, C3, C4, C5, C6, C7, C8])

matrix([[C1], [C2], [C3], [C4], [C5], [C6], [C7], [C8]])

 

 

Multiply K and P:

dCdt_manual_input:= K*P

matrix([[C2*k_2_A + C3*k_2_B_1_s_1 + C4*k_2_B_1_s_2 + C5*k_2_B_1_s_3 + C6*k_2_B_1_s_4 + C7*k_2_B_1_s_5 - C1*(k_1_B_1_s_1 + k_1_B_1_s_2 + k_1_B_1_s_3 + k_1_B_1_s_4 + k_1_B_1_s_5 + Leq*k_1_A)], [C8*k_2_B_2 - C2*(k_2_A + k_1_B_2) + C1*Leq*k_1_A], [C1*k_1_B_1_s_1 + C4*k_2_C_s_1_2 + C5*k_2_C_s_1_3 + C6*k_2_C_s_1_4 + C7*k_2_C_s_1_5 - C3*(k_1_C_s_1_2 + k_1_C_s_1_3 + k_1_C_s_1_4 + k_1_C_s_1_5 + k_2_B_1_s_1)], [C1*k_1_B_1_s_2 + C3*k_1_C_s_1_2 + C5*k_2_C_s_2_3 + C6*k_2_C_s_2_4 + C7*k_2_C_s_2_5 - C4*(k_1_C_s_2_3 + k_1_C_s_2_4 + k_1_C_s_2_5 + k_2_B_1_s_2 + k_2_C_s_1_2)], [C1*k_1_B_1_s_3 + C3*k_1_C_s_1_3 + C4*k_1_C_s_2_3 + C6*k_2_C_s_3_4 + C7*k_2_C_s_3_5 - C5*(k_1_C_s_3_4 + k_1_C_s_3_5 + k_2_B_1_s_3 + k_2_C_s_1_3 + k_2_C_s_2_3)], [C1*k_1_B_1_s_4 + C3*k_1_C_s_1_4 + C4*k_1_C_s_2_4 + C5*k_1_C_s_3_4 + C7*k_2_C_s_4_5 - C6*(k_1_C_s_4_5 + k_2_B_1_s_4 + k_2_C_s_1_4 + k_2_C_s_2_4 + k_2_C_s_3_4)], [C1*k_1_B_1_s_5 + C3*k_1_C_s_1_5 + C4*k_1_C_s_2_5 + C5*k_1_C_s_3_5 + C6*k_1_C_s_4_5 - C7*(k_2_B_1_s_5 + k_2_C_s_1_5 + k_2_C_s_2_5 + k_2_C_s_3_5 + k_2_C_s_4_5)], [C2*k_1_B_2 - C8*k_2_B_2]])

 

Collect right-hand-side parts of net rate equations expressed in sequential species names

dCdt_mupad:=matrix(8,1,[ rhs(feq_3a), rhs(feq_3b), rhs(feq_3c), rhs(feq_3d), rhs(feq_3e), rhs(feq_3f), rhs(feq_3g), rhs(feq_3h)])

matrix([[C2*k_2_A - C1*k_1_B_1_s_1 - C1*k_1_B_1_s_2 - C1*k_1_B_1_s_3 - C1*k_1_B_1_s_4 - C1*k_1_B_1_s_5 + C3*k_2_B_1_s_1 + C4*k_2_B_1_s_2 + C5*k_2_B_1_s_3 + C6*k_2_B_1_s_4 + C7*k_2_B_1_s_5 - C1*Leq*k_1_A], [C8*k_2_B_2 - C2*k_1_B_2 - C2*k_2_A + C1*Leq*k_1_A], [C1*k_1_B_1_s_1 - C3*k_1_C_s_1_2 - C3*k_1_C_s_1_3 - C3*k_1_C_s_1_4 - C3*k_1_C_s_1_5 - C3*k_2_B_1_s_1 + C4*k_2_C_s_1_2 + C5*k_2_C_s_1_3 + C6*k_2_C_s_1_4 + C7*k_2_C_s_1_5], [C1*k_1_B_1_s_2 + C3*k_1_C_s_1_2 - C4*k_1_C_s_2_3 - C4*k_1_C_s_2_4 - C4*k_1_C_s_2_5 - C4*k_2_B_1_s_2 - C4*k_2_C_s_1_2 + C5*k_2_C_s_2_3 + C6*k_2_C_s_2_4 + C7*k_2_C_s_2_5], [C1*k_1_B_1_s_3 + C3*k_1_C_s_1_3 + C4*k_1_C_s_2_3 - C5*k_1_C_s_3_4 - C5*k_1_C_s_3_5 - C5*k_2_B_1_s_3 - C5*k_2_C_s_1_3 - C5*k_2_C_s_2_3 + C6*k_2_C_s_3_4 + C7*k_2_C_s_3_5], [C1*k_1_B_1_s_4 + C3*k_1_C_s_1_4 + C4*k_1_C_s_2_4 + C5*k_1_C_s_3_4 - C6*k_1_C_s_4_5 - C6*k_2_B_1_s_4 - C6*k_2_C_s_1_4 - C6*k_2_C_s_2_4 - C6*k_2_C_s_3_4 + C7*k_2_C_s_4_5], [C1*k_1_B_1_s_5 + C3*k_1_C_s_1_5 + C4*k_1_C_s_2_5 + C5*k_1_C_s_3_5 + C6*k_1_C_s_4_5 - C7*k_2_B_1_s_5 - C7*k_2_C_s_1_5 - C7*k_2_C_s_2_5 - C7*k_2_C_s_3_5 - C7*k_2_C_s_4_5], [C2*k_1_B_2 - C8*k_2_B_2]])

 

Compare derivation result to manual input

dCdt_mupad=dCdt_manual_input:
normal(%);
bool(%)

matrix([[C2*k_2_A - C1*k_1_B_1_s_1 - C1*k_1_B_1_s_2 - C1*k_1_B_1_s_3 - C1*k_1_B_1_s_4 - C1*k_1_B_1_s_5 + C3*k_2_B_1_s_1 + C4*k_2_B_1_s_2 + C5*k_2_B_1_s_3 + C6*k_2_B_1_s_4 + C7*k_2_B_1_s_5 - C1*Leq*k_1_A], [C8*k_2_B_2 - C2*k_1_B_2 - C2*k_2_A + C1*Leq*k_1_A], [C1*k_1_B_1_s_1 - C3*k_1_C_s_1_2 - C3*k_1_C_s_1_3 - C3*k_1_C_s_1_4 - C3*k_1_C_s_1_5 - C3*k_2_B_1_s_1 + C4*k_2_C_s_1_2 + C5*k_2_C_s_1_3 + C6*k_2_C_s_1_4 + C7*k_2_C_s_1_5], [C1*k_1_B_1_s_2 + C3*k_1_C_s_1_2 - C4*k_1_C_s_2_3 - C4*k_1_C_s_2_4 - C4*k_1_C_s_2_5 - C4*k_2_B_1_s_2 - C4*k_2_C_s_1_2 + C5*k_2_C_s_2_3 + C6*k_2_C_s_2_4 + C7*k_2_C_s_2_5], [C1*k_1_B_1_s_3 + C3*k_1_C_s_1_3 + C4*k_1_C_s_2_3 - C5*k_1_C_s_3_4 - C5*k_1_C_s_3_5 - C5*k_2_B_1_s_3 - C5*k_2_C_s_1_3 - C5*k_2_C_s_2_3 + C6*k_2_C_s_3_4 + C7*k_2_C_s_3_5], [C1*k_1_B_1_s_4 + C3*k_1_C_s_1_4 + C4*k_1_C_s_2_4 + C5*k_1_C_s_3_4 - C6*k_1_C_s_4_5 - C6*k_2_B_1_s_4 - C6*k_2_C_s_1_4 - C6*k_2_C_s_2_4 - C6*k_2_C_s_3_4 + C7*k_2_C_s_4_5], [C1*k_1_B_1_s_5 + C3*k_1_C_s_1_5 + C4*k_1_C_s_2_5 + C5*k_1_C_s_3_5 + C6*k_1_C_s_4_5 - C7*k_2_B_1_s_5 - C7*k_2_C_s_1_5 - C7*k_2_C_s_2_5 - C7*k_2_C_s_3_5 - C7*k_2_C_s_4_5], [C2*k_1_B_2 - C8*k_2_B_2]]) = matrix([[C2*k_2_A - C1*k_1_B_1_s_1 - C1*k_1_B_1_s_2 - C1*k_1_B_1_s_3 - C1*k_1_B_1_s_4 - C1*k_1_B_1_s_5 + C3*k_2_B_1_s_1 + C4*k_2_B_1_s_2 + C5*k_2_B_1_s_3 + C6*k_2_B_1_s_4 + C7*k_2_B_1_s_5 - C1*Leq*k_1_A], [C8*k_2_B_2 - C2*k_1_B_2 - C2*k_2_A + C1*Leq*k_1_A], [C1*k_1_B_1_s_1 - C3*k_1_C_s_1_2 - C3*k_1_C_s_1_3 - C3*k_1_C_s_1_4 - C3*k_1_C_s_1_5 - C3*k_2_B_1_s_1 + C4*k_2_C_s_1_2 + C5*k_2_C_s_1_3 + C6*k_2_C_s_1_4 + C7*k_2_C_s_1_5], [C1*k_1_B_1_s_2 + C3*k_1_C_s_1_2 - C4*k_1_C_s_2_3 - C4*k_1_C_s_2_4 - C4*k_1_C_s_2_5 - C4*k_2_B_1_s_2 - C4*k_2_C_s_1_2 + C5*k_2_C_s_2_3 + C6*k_2_C_s_2_4 + C7*k_2_C_s_2_5], [C1*k_1_B_1_s_3 + C3*k_1_C_s_1_3 + C4*k_1_C_s_2_3 - C5*k_1_C_s_3_4 - C5*k_1_C_s_3_5 - C5*k_2_B_1_s_3 - C5*k_2_C_s_1_3 - C5*k_2_C_s_2_3 + C6*k_2_C_s_3_4 + C7*k_2_C_s_3_5], [C1*k_1_B_1_s_4 + C3*k_1_C_s_1_4 + C4*k_1_C_s_2_4 + C5*k_1_C_s_3_4 - C6*k_1_C_s_4_5 - C6*k_2_B_1_s_4 - C6*k_2_C_s_1_4 - C6*k_2_C_s_2_4 - C6*k_2_C_s_3_4 + C7*k_2_C_s_4_5], [C1*k_1_B_1_s_5 + C3*k_1_C_s_1_5 + C4*k_1_C_s_2_5 + C5*k_1_C_s_3_5 + C6*k_1_C_s_4_5 - C7*k_2_B_1_s_5 - C7*k_2_C_s_1_5 - C7*k_2_C_s_2_5 - C7*k_2_C_s_3_5 - C7*k_2_C_s_4_5], [C2*k_1_B_2 - C8*k_2_B_2]])
TRUE

=> Typed K-matrix is correct.

 

 

 

 

 

 

Final expression for U-5R-RL kinetic matrix

K;

matrix([[- k_1_B_1_s_1 - k_1_B_1_s_2 - k_1_B_1_s_3 - k_1_B_1_s_4 - k_1_B_1_s_5 - Leq*k_1_A, k_2_A, k_2_B_1_s_1, k_2_B_1_s_2, k_2_B_1_s_3, k_2_B_1_s_4, k_2_B_1_s_5, 0], [Leq*k_1_A, - k_2_A - k_1_B_2, 0, 0, 0, 0, 0, k_2_B_2], [k_1_B_1_s_1, 0, - k_1_C_s_1_2 - k_1_C_s_1_3 - k_1_C_s_1_4 - k_1_C_s_1_5 - k_2_B_1_s_1, k_2_C_s_1_2, k_2_C_s_1_3, k_2_C_s_1_4, k_2_C_s_1_5, 0], [k_1_B_1_s_2, 0, k_1_C_s_1_2, - k_1_C_s_2_3 - k_1_C_s_2_4 - k_1_C_s_2_5 - k_2_B_1_s_2 - k_2_C_s_1_2, k_2_C_s_2_3, k_2_C_s_2_4, k_2_C_s_2_5, 0], [k_1_B_1_s_3, 0, k_1_C_s_1_3, k_1_C_s_2_3, - k_1_C_s_3_4 - k_1_C_s_3_5 - k_2_B_1_s_3 - k_2_C_s_1_3 - k_2_C_s_2_3, k_2_C_s_3_4, k_2_C_s_3_5, 0], [k_1_B_1_s_4, 0, k_1_C_s_1_4, k_1_C_s_2_4, k_1_C_s_3_4, - k_1_C_s_4_5 - k_2_B_1_s_4 - k_2_C_s_1_4 - k_2_C_s_2_4 - k_2_C_s_3_4, k_2_C_s_4_5, 0], [k_1_B_1_s_5, 0, k_1_C_s_1_5, k_1_C_s_2_5, k_1_C_s_3_5, k_1_C_s_4_5, - k_2_B_1_s_5 - k_2_C_s_1_5 - k_2_C_s_2_5 - k_2_C_s_3_5 - k_2_C_s_4_5, 0], [0, k_1_B_2, 0, 0, 0, 0, 0, -k_2_B_2]])

 

 

 

 

 

 

Back to Contents

 

 

 

 

 

 

 

Conclusions

 

K matrices for U-nR-RL models were successfully developed.

NOTE: U-1R-RL is not the same as IDAP's U-R-RL!

 

 

 

Back to Contents