U_R_RL_RM_test1 Case 1: Reduce the mechanism to R+L=RL Equilibrium constants: Ka(A1)=1.00e+08 Ka(A3)=1.00e-16 Ka(B1)=1.00e-16 Ka(B2)=1.00e-16 Ka(B3)=5.00e+00 Ka(A2)=1.00e+08 (dependent) Ka(A4)=5.00e+00 (dependent) Rate constants (1-forward, 2-reverse): k1(A1)=1.00e+08 k2(A1)=1.00e+00 k1(A2)=1.00e+08 k2(A2)=1.00e+00 k1(A3)=1.00e-16 k2(A3)=1.00e+00 k1(A4)=5.00e+00 k2(A4)=1.00e+00 k1(B1)=1.00e-16 k2(B1)=1.00e+00 k1(B2)=5.00e-19 k2(B2)=5.00e-03 k1(B3)=2.50e-02 k2(B3)=5.00e-03 Chemical shifts: w0(R)=200.0 /s (31.8 Hz) w0(R*)=150.0 /s (23.9 Hz) w0(RL)=250.0 /s (39.8 Hz) w0(R*L)=300.0 /s (47.8 Hz) w0(RM)=50.0 /s (8.0 Hz) w0(R*M)=0.0 /s (0.0 Hz) Base relaxation rates: R2(R)=10.0 /s R2(R*)=10.0 /s R2(RL)=10.0 /s R2(R*L)=10.0 /s R2(RM)=10.0 /s R2(R*M)=10.0 /s Enthalpy difference from the base state: dH(R)=0.0 dH(R*)=-1.0 dH(RL)=-5.0 dH(R*L)=-4.0 dH(RM)=-3.0 dH(R*M)=-2.0 Total R concentration (*1000): 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Ratio of total L to total R: 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20