B family models (analysis)

 

Binding of two ligand molecules to one receptor monomer including bidentate

ligand binding; macroscopic and microscopic consideration.

 

 

Evgenii L. Kovrigin

12-12-2014

 

Updates:

1/13/2015 - rename transitions to have internal isomerization ("hopping") transition called "B" in all models and bi-dentate binding transition called "C"

Name replacement schedule:

B_1_I_I -> C_I_I

B_1_I -> C_I

B_1 -> B

B_2 -> B

 

 

 

 

Contents

 

Goals

 

1. Load equations

 

2. Simulation

 

3. Summary of test results

 

 

Conclusions

 

 

 

Back to Contents

 

 

Goals

 

Here I am analyzing the numerical solutions for the B-family models

 

 

From:   Equilibrium_thermodynamic_models/B_family_models/B

 

image

 

The more complicated version where the ligand is bidentate and capable of binding at both sites:

From  Equilibrium_thermodynamic_models/B_family_models/B-bidentateL

This may be viewed as a combination of B and U-RL model (not exactly, though, because there are three isomerization transitions in B-bidentateL-micro.

image

 

 

 

 

Back to Contents

 

 

 

1. Load equations

 

clean up workspace

reset()

 

STEP 1: Set path to saved derivation results

NOTE: make sure the path ends with slash character "/".

ProjectName:="B_family_models_derivation";
CurrentPath:="/Volumes/Leopard_Partition/Users/kovrigin/Documents/Workspace/Global Analysis/IDAP/Mathematical_models/Equilibrium_thermodynamic_models/B_family_models/";

"B_family_models_derivation"
"/Volumes/Leopard_Partition/Users/kovrigin/Documents/Workspace/Global Analysis/IDAP/Mathematical_models/Equilibrium_thermodynamic_models/B_family_models/"

 

 

 

Read results of derivations

filename:=CurrentPath.ProjectName.".mb";
fread(filename,Quiet):
anames(User);

"/Volumes/Leopard_Partition/Users/kovrigin/Documents/Workspace/Global Analysis/IDAP/Mathematical_models/Equilibrium_thermodynamic_models/B_family_models/B_family_models_derivation.mb"
{CurrentPath, ProjectName, eqKB1_Bmicro, eqKA2I_Bmicro, eqKB2_Bbidentate, eqKA2I_Bbidentate, eqKB1I_Bbidentate, eqReq_BmAcro, eqReq_Bmicro, eqRLeq_BmAcro, eqRL2eq_BmAcro, eqRL2eq_Bmicro, eqRtot_BmAcro, eqRtot_Bmicro, eqRLIeq_Bmicro, eqRLIIeq_Bmicro, eqReq_Bbidentate, eqRL2eq_Bbidentate, eqRtot_Bbidentate, eqRLIeq_Bbidentate, eqRLIIeq_Bbidentate, eqRLbieq_Bbidentate, fRtot_BmAcro, fRtot_Bmicro, fRtot_Bbidentate, filename, pnLeq_BmAcro, pnLeq_Bmicro, pnLeq_Bbidentate, pnReq_BmAcro, pnReq_Bmicro, pnRLeq_BmAcro, pnRL2eq_BmAcro, pnRL2eq_Bmicro, pnRLIeq_Bmicro, pnRLIIeq_Bmicro, pnReq_Bbidentate, pnRL2eq_Bbidentate, pnRLIeq_Bbidentate, pnRLIIeq_Bbidentate, pnRLbieq_Bbidentate}

 

STEP 2: Assume values and test procedures:

Rtot_value:=1e-3:
K_A_1_value:= 1e7:
K_A_2_value:= 1e8:
LR_ratio_value:= 0.8:

K_A_1_I_value:=2e4:
K_A_1_I_I_value:=1e2:
K_A_2_I_I_value:=3e5:
K_C_I_I_value:=11:

 

Test calculations:

pnLeq_BmAcro(Rtot_value, LR_ratio_value, K_A_1_value, K_A_2_value);
pnReq_BmAcro(Rtot_value, LR_ratio_value, K_A_1_value, K_A_2_value);
pnRLeq_BmAcro(Rtot_value, LR_ratio_value, K_A_1_value, K_A_2_value);
pnRL2eq_BmAcro(Rtot_value, LR_ratio_value, K_A_1_value, K_A_2_value);

0.00000002499924398
0.0005333462362
0.0001333325269
0.000333321237

pnLeq_Bmicro(Rtot_value, LR_ratio_value, K_A_1_I_value, K_A_1_I_I_value, K_A_2_I_I_value);
pnReq_Bmicro(Rtot_value, LR_ratio_value, K_A_1_I_value, K_A_1_I_I_value, K_A_2_I_I_value);
pnRLIIeq_Bmicro(Rtot_value, LR_ratio_value, K_A_1_I_value, K_A_1_I_I_value, K_A_2_I_I_value);
pnRLIeq_Bmicro(Rtot_value, LR_ratio_value, K_A_1_I_value, K_A_1_I_I_value, K_A_2_I_I_value);
pnRL2eq_Bmicro(Rtot_value, LR_ratio_value, K_A_1_I_value, K_A_1_I_I_value, K_A_2_I_I_value);

0.00001014309073
0.0005490976003
0.0000005569546777
0.0001113909355
0.0003389545095

pnLeq_Bbidentate(Rtot_value, LR_ratio_value, K_A_1_I_value, K_A_1_I_I_value, K_A_2_I_I_value, K_C_I_I_value);
pnReq_Bbidentate(Rtot_value, LR_ratio_value, K_A_1_I_value, K_A_1_I_I_value, K_A_2_I_I_value, K_C_I_I_value);
pnRLIeq_Bbidentate(Rtot_value, LR_ratio_value, K_A_1_I_value, K_A_1_I_I_value, K_A_2_I_I_value, K_C_I_I_value);
pnRLIIeq_Bbidentate(Rtot_value, LR_ratio_value, K_A_1_I_value, K_A_1_I_I_value, K_A_2_I_I_value, K_C_I_I_value);
pnRLbieq_Bbidentate(Rtot_value, LR_ratio_value, K_A_1_I_value, K_A_1_I_I_value, K_A_2_I_I_value, K_C_I_I_value);
pnRL2eq_Bbidentate(Rtot_value, LR_ratio_value, K_A_1_I_value, K_A_1_I_I_value, K_A_2_I_I_value, K_C_I_I_value);

0.000007569764126
0.0003163247277
0.00004789007152
0.0000002394503576
0.0005267907868
0.0001087549636

=> all operational

 

 

 

STEP 3: Make wrapper functions for plotting dependent only on one parameter x=L/R:

fnLeq_BmAcro:=x -> pnLeq_BmAcro(Rtot_value, x, K_A_1_value, K_A_2_value):
fnReq_BmAcro:=x ->  pnReq_BmAcro(Rtot_value, x, K_A_1_value, K_A_2_value):
fnRLeq_BmAcro:=x -> pnRLeq_BmAcro(Rtot_value, x, K_A_1_value, K_A_2_value):
fnRL2eq_BmAcro:=x -> pnRL2eq_BmAcro(Rtot_value, x, K_A_1_value, K_A_2_value):

fnLeq_Bmicro:=x -> pnLeq_Bmicro(Rtot_value, x, K_A_1_I_value, K_A_1_I_I_value, K_A_2_I_I_value):
fnReq_Bmicro:=x -> pnReq_Bmicro(Rtot_value, x, K_A_1_I_value, K_A_1_I_I_value, K_A_2_I_I_value):
fnRLIIeq_Bmicro:=x -> pnRLIIeq_Bmicro(Rtot_value, x, K_A_1_I_value, K_A_1_I_I_value, K_A_2_I_I_value):
fnRLIeq_Bmicro:=x -> pnRLIeq_Bmicro(Rtot_value, x, K_A_1_I_value, K_A_1_I_I_value, K_A_2_I_I_value):
fnRL2eq_Bmicro:=x -> pnRL2eq_Bmicro(Rtot_value, x, K_A_1_I_value, K_A_1_I_I_value, K_A_2_I_I_value):

fnLeq_Bbidentate:=x -> pnLeq_Bbidentate(Rtot_value, x, K_A_1_I_value, K_A_1_I_I_value, K_A_2_I_I_value, K_C_I_I_value):
fnReq_Bbidentate:=x -> pnReq_Bbidentate(Rtot_value, x, K_A_1_I_value, K_A_1_I_I_value, K_A_2_I_I_value, K_C_I_I_value):
fnRLIeq_Bbidentate:=x -> pnRLIeq_Bbidentate(Rtot_value, x, K_A_1_I_value, K_A_1_I_I_value, K_A_2_I_I_value, K_C_I_I_value):
fnRLIIeq_Bbidentate:=x -> pnRLIIeq_Bbidentate(Rtot_value, x, K_A_1_I_value, K_A_1_I_I_value, K_A_2_I_I_value, K_C_I_I_value):
fnRLbieq_Bbidentate:=x -> pnRLbieq_Bbidentate(Rtot_value, x, K_A_1_I_value, K_A_1_I_I_value, K_A_2_I_I_value, K_C_I_I_value):
fnRL2eq_Bbidentate:=x -> pnRL2eq_Bbidentate(Rtot_value, x, K_A_1_I_value, K_A_1_I_I_value, K_A_2_I_I_value, K_C_I_I_value):

 

 

 

 

 

Back to Contents

 

 

 

 

2. Simulation

 

 

2.1 Macroscopic B model

 

ModelName:="B macro":
// Thermodynamic parameters
Rtot_value:=1e-3:
K_A_1_value:= 1e4:
K_A_2_value:= 1e4:
LR_ratio_max:= 6:

// Plotting parameters
LW:=1: x_min:=1e-6:


// Compute dependent constants
// None in this model

p_Leq_BmAcro:=  plot::Function2d(Function=(fnLeq_BmAcro), LegendText="[L]", Color = RGB::Green, XMin=(x_min),XMax=(LR_ratio_max),XName=(x),TitlePositionX=(0) ,LineWidth=LW):
p_Req_BmAcro:=  plot::Function2d(Function=(fnReq_BmAcro), LegendText="[R]", Color = RGB::Black, XMin=(x_min),XMax=(LR_ratio_max),XName=(x),TitlePositionX=(0) ,LineWidth=LW):
p_RLeq_BmAcro:=  plot::Function2d(Function=(fnRLeq_BmAcro), LegendText="[RL]", Color = RGB::Blue, XMin=(x_min),XMax=(LR_ratio_max),XName=(x),TitlePositionX=(0) ,LineWidth=LW):
p_RL2eq_BmAcro:=  plot::Function2d(Function=(fnRL2eq_BmAcro), LegendText="[RL2]", Color = RGB::Red, XMin=(x_min),XMax=(LR_ratio_max),XName=(x),TitlePositionX=(0) ,LineWidth=LW):

// Report constants
print(Unquoted,"Model: ".ModelName);
print(Unquoted,"R(total):=".Rtot_value.":");
print(Unquoted,"K_A_1:=".K_A_1_value.":");
print(Unquoted,"K_A_2:=".K_A_2_value.":");
// Plot all
// plot all together
plot(p_Leq_BmAcro,p_Req_BmAcro, p_RLeq_BmAcro,p_RL2eq_BmAcro,   YAxisTitle="M", Header=("Model: ".ProjectName), Height=160, Width=100,TicksLabelFont=["Helvetica",12,[0,0,0],Left], AxesTitleFont=["Helvetica",14,[0,0,0],Left], XGridVisible=TRUE, YGridVisible=TRUE,LegendVisible=TRUE, LegendFont=["Helvetica",14,[0,0,0],Left]);

Model: B macro
R(total):=0.001:
K_A_1:=10000.0:
K_A_2:=10000.0:
MuPAD graphics

 

Summary

 

 

Remove second binding event

 

Equal microscopic binding constants (identical sites, no cooperativity between sites); K1=4*K2

 

Equal mAcroscopic binding constants (identical sites, positive cooperativity)

 

 

Model: B macro
R(total):=0.001:
K_A_1:=10000.0:
K_A_2:=0:
MuPAD graphics

Model: B macro
R(total):=0.001:
K_A_1:=10000.0:
K_A_2:=2500.0:
MuPAD graphics

Model: B macro
R(total):=0.001:
K_A_1:=10000.0:
K_A_2:=10000.0:
MuPAD graphics

 

 

 

 

 

 

 

=> Model behaves as expected

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Microscopic B model (mono-dentate binding only

 

 

ModelName:="B micro":
// Thermodynamic parameters
Rtot_value:=1e-3:
K_A_1_I_value:=5000:
K_A_1_I_I_value:=5000:
K_A_2_I_I_value:=0:
LR_ratio_max:= 3:

// Plotting parameters
LW:=1: x_min:=1e-6:


// Compute dependent constants
K_A_2_I_value:= eqKA2I_Bmicro[2] | K_A_1_I=K_A_1_I_value | K_A_1_I_I=K_A_1_I_I_value | K_A_2_I_I=K_A_2_I_I_value:
K_B_value:= eqKB1_Bmicro[2] | K_A_1_I=K_A_1_I_value | K_A_1_I_I=K_A_1_I_I_value | K_A_2_I_I=K_A_2_I_I_value:


p_Leq_Bmicro:=  plot::Function2d(Function=(fnLeq_Bmicro), LegendText="[L]", Color = RGB::Green, XMin=(x_min),XMax=(LR_ratio_max),XName=(x),TitlePositionX=(0) ,LineWidth=LW):
p_Req_Bmicro:=  plot::Function2d(Function=(fnReq_Bmicro), LegendText="[R]", Color = RGB::Black, XMin=(x_min),XMax=(LR_ratio_max),XName=(x),TitlePositionX=(0) ,LineWidth=LW):
p_RLIeq_Bmicro:=  plot::Function2d(Function=(fnRLIeq_Bmicro), LegendText="[RLI]", Color = RGB::Blue, XMin=(x_min),XMax=(LR_ratio_max),XName=(x),TitlePositionX=(0) ,LineWidth=LW):
p_RLIIeq_Bmicro:=  plot::Function2d(Function=(fnRLIIeq_Bmicro), LegendText="[RLII]", Color = RGB::Cyan, XMin=(x_min),XMax=(LR_ratio_max),XName=(x),TitlePositionX=(0) ,LineWidth=LW):
p_RL2eq_Bmicro:=  plot::Function2d(Function=(fnRL2eq_Bmicro), LegendText="[RL2]", Color = RGB::Red, XMin=(x_min),XMax=(LR_ratio_max),XName=(x),TitlePositionX=(0) ,LineWidth=LW):

// Report constants
print(Unquoted,"Model: ".ModelName);
print(Unquoted,"R(total):=".Rtot_value.":");
print(Unquoted,"K_A_1_I:=".K_A_1_I_value.":");
print(Unquoted,"K_A_1_I_I:=".K_A_1_I_I_value.":");
print(Unquoted,"K_A_2_I_I:=".K_A_2_I_I_value.":");
print(Unquoted,"K_A_2_I:=".K_A_2_I_value." (dep):");
print(Unquoted,"K_B:=".K_B_value." (dep):");
// Plot all
// plot all together
plot(p_Leq_Bmicro,p_Req_Bmicro, p_RLIeq_Bmicro,p_RLIIeq_Bmicro,p_RL2eq_Bmicro,   YAxisTitle="M", Header=("Model: ".ProjectName), Height=160, Width=100,TicksLabelFont=["Helvetica",12,[0,0,0],Left], AxesTitleFont=["Helvetica",14,[0,0,0],Left], XGridVisible=TRUE, YGridVisible=TRUE,LegendVisible=TRUE, LegendFont=["Helvetica",14,[0,0,0],Left]);

Model: B micro
R(total):=0.001:
K_A_1_I:=5000:
K_A_1_I_I:=5000:
K_A_2_I_I:=0:
K_A_2_I:=0 (dep):
K_B:=1 (dep):
MuPAD graphics

 

 

 

Summary of test cases

 

 

Turn off the second transition (identical sites)

 

No cooperativity between two identical sites: K1=2K, K2=K/2

(matching B macro simulation)

 

Positive cooperativity, identical sites

(matching B-macro simulation)

 

No cooperativity, different affinity of two sites

 

Positive cooperativity, different affinity between two sites

 

 

 

 

 

Model: B micro

R(total):=0.001:
K_A_1_I:=5000:
K_A_1_I_I:=5000:
K_A_2_I_I:=0:
K_A_2_I:=0 (dep):
K_B:=1 (dep):
MuPAD graphics

Model: B micro
R(total):=0.001:
K_A_1_I:=5000:
K_A_1_I_I:=5000:
K_A_2_I_I:=5000:
K_A_2_I:=5000 (dep):
K_B:=1 (dep):
MuPAD graphics

Model: B micro
R(total):=0.001:
K_A_1_I:=5000:
K_A_1_I_I:=5000:
K_A_2_I_I:=20000:
K_A_2_I:=20000 (dep):
K_B:=1 (dep):
MuPAD graphics

Model: B micro
R(total):=0.001:
K_A_1_I:=5000:
K_A_1_I_I:=2500:
K_A_2_I_I:=2500:
K_A_2_I:=5000 (dep):
K_B:=1/2 (dep):
MuPAD graphics

Model: B micro
R(total):=0.001:
K_A_1_I:=5000:
K_A_1_I_I:=2500:
K_A_2_I_I:=20000:
K_A_2_I:=40000 (dep):
K_B:=1/2 (dep):
MuPAD graphics

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=> Model behaves as expected: reproduces behavior of the B macro if sites are set to be identical. Offers microscopic view as advertised.

 

 

 

 

 

 

 

2.3 Microscopic B-bidentateL model (bi-dentate ligand)

 

eqKB2_Bbidentate

K_B = K_A_1_I_I/K_A_1_I

 

 

ModelName:="B-bidentateL":
// Thermodynamic parameters
Rtot_value:=1e-3:
K_A_1_I_value:=5000:
K_A_1_I_I_value:=2500:
K_A_2_I_I_value:=20000:
K_C_I_I_value:=10:
LR_ratio_max:= 3:

// Plotting parameters
LW:=1: x_min:=1e-6:


// Compute dependent constants
K_A_2_I_value:= eqKA2I_Bbidentate[2] | K_A_1_I=K_A_1_I_value | K_A_1_I_I=K_A_1_I_I_value | K_A_2_I_I=K_A_2_I_I_value | K_C_I_I=K_C_I_I_value:
K_C_I_value:= eqKB1I_Bbidentate[2] | K_A_1_I=K_A_1_I_value | K_A_1_I_I=K_A_1_I_I_value | K_A_2_I_I=K_A_2_I_I_value | K_C_I_I=K_C_I_I_value:
K_B_value:= eqKB2_Bbidentate[2] | K_A_1_I=K_A_1_I_value | K_A_1_I_I=K_A_1_I_I_value | K_A_2_I_I=K_A_2_I_I_value | K_C_I_I=K_C_I_I_value:


p_Leq_Bbidentate:=  plot::Function2d(Function=(fnLeq_Bbidentate), LegendText="[L]", Color = RGB::Green, XMin=(x_min),XMax=(LR_ratio_max),XName=(x),TitlePositionX=(0) ,LineWidth=LW):
p_Req_Bbidentate:=  plot::Function2d(Function=(fnReq_Bbidentate), LegendText="[R]", Color = RGB::Black, XMin=(x_min),XMax=(LR_ratio_max),XName=(x),TitlePositionX=(0) ,LineWidth=LW):
p_RLIeq_Bbidentate:=  plot::Function2d(Function=(fnRLIeq_Bbidentate), LegendText="[RLI]", Color = RGB::Blue, XMin=(x_min),XMax=(LR_ratio_max),XName=(x),TitlePositionX=(0) ,LineWidth=LW):
p_RLIIeq_Bbidentate:=  plot::Function2d(Function=(fnRLIIeq_Bbidentate), LegendText="[RLII]", Color = RGB::Cyan, XMin=(x_min),XMax=(LR_ratio_max),XName=(x),TitlePositionX=(0) ,LineWidth=LW):
p_RL2eq_Bbidentate:=  plot::Function2d(Function=(fnRL2eq_Bbidentate), LegendText="[RL2]", Color = RGB::Red, XMin=(x_min),XMax=(LR_ratio_max),XName=(x),TitlePositionX=(0) ,LineWidth=LW):
p_RLbieq_Bbidentate:=  plot::Function2d(Function=(fnRLbieq_Bbidentate), LegendText="[RLbi]", Color = RGB::Magenta, XMin=(x_min),XMax=(LR_ratio_max),XName=(x),TitlePositionX=(0) ,LineWidth=LW):

// Report constants
print(Unquoted,"Model: ".ModelName);
print(Unquoted,"R(total)  = ".Rtot_value);
print(Unquoted,"K_A_1_I   = ".K_A_1_I_value);
print(Unquoted,"K_A_2_I   = ".K_A_2_I_value." (dep)");
print(Unquoted,"K_A_1_I_I = ".K_A_1_I_I_value);
print(Unquoted,"K_A_2_I_I = ".K_A_2_I_I_value);
print(Unquoted,"K_C_I   = ".K_C_I_value." (dep)");
print(Unquoted,"K_C_I_I = ".K_C_I_I_value);
print(Unquoted,"K_B     = ".K_B_value." (dep)");
// Plot all
// plot all together
plot(p_Leq_Bbidentate,p_Req_Bbidentate, p_RLIeq_Bbidentate,p_RLIIeq_Bbidentate,p_RLbieq_Bbidentate,p_RL2eq_Bbidentate,   YAxisTitle="M", Header=("Model: ".ProjectName), Height=160, Width=100,TicksLabelFont=["Helvetica",12,[0,0,0],Left], AxesTitleFont=["Helvetica",14,[0,0,0],Left], XGridVisible=TRUE, YGridVisible=TRUE,LegendVisible=TRUE, LegendFont=["Helvetica",14,[0,0,0],Left]);

Model: B-bidentateL
R(total)  = 0.001
K_A_1_I   = 5000
K_A_2_I   = 40000 (dep)
K_A_1_I_I = 2500
K_A_2_I_I = 20000
K_C_I   = 20 (dep)
K_C_I_I = 10
K_B     = 1/2 (dep)
MuPAD graphics

 

Summary of test cases

 

First, reduce this model to previous one: no bidentate binding

 

 

 

no second binding step (matching B micro case above)

No cooperativity between two identical sites: K1=2K, K2=K/2

(matching B macro and B micro simulation above)

Positive cooperativity, identical sites

(matching B-micro simulation)

No cooperativity, different affinity of two sites

Positive cooperativity, different affinity between two sites

Model: B-bidentateL
R(total)  = 0.001
K_A_1_I   = 5000
K_A_2_I   = 0 (dep)
K_A_1_I_I = 5000
K_A_2_I_I = 0
K_C_I   = 0 (dep)
K_C_I_I = 0
K_B     = 1 (dep)
MuPAD graphics

Model: B-bidentateL
R(total)  = 0.001
K_A_1_I   = 5000
K_A_2_I   = 5000 (dep)
K_A_1_I_I = 5000
K_A_2_I_I = 5000
K_C_I   = 0 (dep)
K_C_I_I = 0
K_B     = 1 (dep)
MuPAD graphics

Model: B-bidentateL
R(total)  = 0.001
K_A_1_I   = 5000
K_A_2_I   = 20000 (dep)
K_A_1_I_I = 5000
K_A_2_I_I = 20000
K_C_I   = 0 (dep)
K_C_I_I = 0
K_B     = 1 (dep)
MuPAD graphics

Model: B-bidentateL
R(total)  = 0.001
K_A_1_I   = 5000
K_A_2_I   = 5000 (dep)
K_A_1_I_I = 2500
K_A_2_I_I = 2500
K_C_I   = 0 (dep)
K_C_I_I = 0
K_B     = 1/2 (dep)
MuPAD graphics

Model: B-bidentateL
R(total)  = 0.001
K_A_1_I   = 5000
K_A_2_I   = 40000 (dep)
K_A_1_I_I = 2500
K_A_2_I_I = 20000
K_C_I   = 0 (dep)
K_C_I_I = 0
K_B     = 1/2 (dep)
MuPAD graphics

 

 

 

 

 

 

Include bi-dentate binding mode

Include bi-dentate binding mode

Include bi-dentate binding mode

Include bi-dentate binding mode

Include bi-dentate binding mode

Model: B-bidentateL
R(total)  = 0.001
K_A_1_I   = 5000
K_A_2_I   = 0 (dep)
K_A_1_I_I = 5000
K_A_2_I_I = 0
K_C_I   = 10 (dep)
K_C_I_I = 10
K_B     = 1 (dep)
MuPAD graphics

Model: B-bidentateL
R(total)  = 0.001
K_A_1_I   = 5000
K_A_2_I   = 5000 (dep)
K_A_1_I_I = 5000
K_A_2_I_I = 5000
K_C_I   = 10 (dep)
K_C_I_I = 10
K_B     = 1 (dep)
MuPAD graphics

Model: B-bidentateL
R(total)  = 0.001
K_A_1_I   = 5000
K_A_2_I   = 20000 (dep)
K_A_1_I_I = 5000
K_A_2_I_I = 20000
K_C_I   = 10 (dep)
K_C_I_I = 10
K_B     = 1 (dep)
MuPAD graphics

Model: B-bidentateL
R(total)  = 0.001
K_A_1_I   = 5000
K_A_2_I   = 5000 (dep)
K_A_1_I_I = 2500
K_A_2_I_I = 2500
K_C_I   = 20 (dep)
K_C_I_I = 10
K_B     = 1/2 (dep)
MuPAD graphics

Model: B-bidentateL
R(total)  = 0.001
K_A_1_I   = 5000
K_A_2_I   = 40000 (dep)
K_A_1_I_I = 2500
K_A_2_I_I = 20000
K_C_I   = 20 (dep)
K_C_I_I = 10
K_B     = 1/2 (dep)
MuPAD graphics

 

=> This model completely replicates behavior of B micro if we turn off bidentate binding.

=> Addition of bi-dentate binding produces sensible result

 

 

 

Back to Contents

 

 

 

 

 

Conclusions

 

All three B models work, reproduce corresponding simpler ones and are ready for use in IDAP.

 

 

Back to Contents