U-2R

 

Derivation of equilibrium thermodynamic equations for U-2R system: isomerization in the binding-incompetent state of the receptor

 

image

 

image

 

image

 

 

 

 

 

 

Contents

 

Goals

 

1. Load equations

 

2. Simulation

 

3. Summary of test results

 

 

 

Conclusions

 

 

 

 

 

 

 

 

 

 

 

Back to Contents

 

Goals

 

Here I will analyze numeric solutions I derived in U_2R_derivation.mn.

 

 

Back to Contents

 

 

1. Load equations

 

Clean up

reset()


Path to previous results

ProjectName:="U-2R";
CurrentPath:="/Users/kovrigin_laptop/Documents/Workspace/Global_Analysis/IDAP/Mathematical_models/Equilibrium_thermodynamic_models/U-multi-path-models/nR/U-2R";

"U-2R"
"/Users/kovrigin_laptop/Documents/Workspace/Global_Analysis/IDAP/Mathematical_models/Equilibrium_thermodynamic_models/U-multi-path-models/nR/U-2R"

 

 

Read results of derivations

filename:=CurrentPath.ProjectName.".mb";
fread(filename,Quiet):
anames(User)

"/Users/kovrigin_laptop/Documents/Workspace/Global_Analysis/IDAP/Mathematical_models/Equilibrium_thermodynamic_models/U-multi-path-models/nR/U-2RU-2R.mb"
{CurrentPath, Leq_U_2R, ProjectName, RLeq_U_2R, R_s_1eq_U_2R, R_s_2eq_U_2R, Req_U_2R, fLeq_U_2R, fRLeq_U_2R, fR_s_1eq_U_2R, fR_s_2eq_U_2R, fReq_U_2R, filename}

 

 

Assume some values for testing operation

Total_R:=1e-3:
Total_L:=10e-3:
Ka:=1e3:
Kb_s1:=1:
Kb_s2:=2:

test operation of all functions

fLeq_U_2R(Total_R,  Total_L, Ka, Kb_s1, Kb_s2);
fReq_U_2R(Total_R,  Total_L, Ka, Kb_s1, Kb_s2);
fR_s_1eq_U_2R(Total_R,  Total_L, Ka, Kb_s1, Kb_s2);
fR_s_2eq_U_2R(Total_R,  Total_L, Ka, Kb_s1, Kb_s2);
fRLeq_U_2R(Total_R,  Total_L, Ka, Kb_s1, Kb_s2);

0.009300735254
0.00007518381359
0.00007518381359
0.0001503676272
0.0006992647456

=> operative

 

 

Make wrapper functions for plotting using L/R as X axis

fLeq:=LRratio ->      fLeq_U_2R     (Total_R,  LRratio*Total_R,  Ka, Kb_s1, Kb_s2):
fReq:=LRratio ->      fReq_U_2R     (Total_R,  LRratio*Total_R,  Ka, Kb_s1, Kb_s2):
fR_s_1eq:=LRratio ->  fR_s_1eq_U_2R (Total_R,  LRratio*Total_R,  Ka, Kb_s1, Kb_s2):
fR_s_2eq:=LRratio ->  fR_s_2eq_U_2R (Total_R,  LRratio*Total_R,  Ka, Kb_s1, Kb_s2):
fRLeq:=LRratio ->     fRLeq_U_2R    (Total_R,  LRratio*Total_R,  Ka, Kb_s1, Kb_s2):

Test plotting

Total_R:=1e-3:
LRratio_max:=2:
Ka:=1e6:
Kb_s1:=1:
Kb_s2:=2:

LineW:=1.5: //line width

// create plots

pLeq:=  plot::Function2d(
          Function=(fLeq),
          LegendText="[L]",
          Color = RGB::Blue,
          XMin=(0),
          XMax=(LRratio_max),
          XName=(LRratio),
          TitlePositionX=(0),
          LineWidth=LineW):


pRLeq:=  plot::Function2d(
          Function=(fRLeq),
          LegendText="[RL]",
          Color = RGB::Red,
          XMin=(0),
          XMax=(LRratio_max),
          XName=(LRratio),
          TitlePositionX=(0),
          LineWidth=LineW):


plot(pLeq, pRLeq, LegendVisible=TRUE)

MuPAD graphics

=> works

 

 

 

Back to Contents

 

 

2. Simulation

 

Assume some constants and evaluate titrations.

NOTE: Adjust dependent constant calculation if necessary.

 

Total_R:=1e-3:
LRratio_max:=2:
Ka:=1e6:
Kb_s1:=0.000001:
Kb_s2:=0.000001:

LRratio_max:=1.5: // plotting range

LineW:=1.5: // plot line width


pLeq:=  plot::Function2d(
          Function=(fLeq),
          LegendText="[L]",
          Color = RGB::Blue,
          XMin=(LRratio_max*1e-6),
          XMax=(LRratio_max),
          XName=(LRratio),
          TitlePositionX=(0),
          LineWidth=LineW):



pReq:=  plot::Function2d(
          Function=(fReq),
          LegendText="[R]",
          Color = RGB::Black,
          XMin=(LRratio_max*1e-6),
          XMax=(LRratio_max),
          XName=(LRratio),
          TitlePositionX=(0),
          LineWidth=LineW):

pR_s_1eq:=  plot::Function2d(
          Function=(fR_s_1eq),
          LegendText="[R*]",
          Color = RGB::Green,
          XMin=(LRratio_max*1e-6),
          XMax=(LRratio_max),
          XName=(LRratio),
          TitlePositionX=(0),
          LineWidth=LineW):



pR_s_2eq:=  plot::Function2d(
          Function=(fR_s_2eq),
          LegendText="[R**]",
          Color = RGB::Grey,
          XMin=(LRratio_max*1e-6),
          XMax=(LRratio_max),
          XName=(LRratio),
          TitlePositionX=(0),
          LineWidth=LineW):


pRLeq:=  plot::Function2d(
          Function=(fRLeq),
          LegendText="[RL]",
          Color = RGB::Red,
          XMin=(LRratio_max*1e-6),
          XMax=(LRratio_max),
          XName=(LRratio),
          TitlePositionX=(0),
          LineWidth=LineW):






// Text report
print(Unquoted,"Model: ".ProjectName);
print(Unquoted,"Total_R=".Total_R);
Kda:=1/Ka:
print(Unquoted,"Ka=".Ka.",   Kd=".Kda);
print(Unquoted,"Kb*=".Kb_s1);
print(Unquoted,"Kb**=".Kb_s2);
Kc:=Kb_s2/Kb_s1:
print(Unquoted,"Kc*-**=".Kc);

// plot all together
plot(pLeq, pReq,  pR_s_1eq, pR_s_2eq, pRLeq,
   YAxisTitle="[X]", Header=("Model: ".ProjectName),
   Height=160, Width=100,TicksLabelFont=["Helvetica",12,[0,0,0],Left],
  AxesTitleFont=["Helvetica",14,[0,0,0],Left],
  XGridVisible=TRUE, YGridVisible=TRUE,
  LegendVisible=TRUE, LegendFont=["Helvetica",14,[0,0,0],Left],
  ViewingBoxYMax=Total_R);


Model: U-2R
Total_R=0.001
Ka=1000000.0,   Kd=0.000001
Kb*=0.000001
Kb**=0.000001
Kc*-**=1.0
MuPAD graphics

 

 

Jump back to the beginning of simulation section

 

 

 

 

 

 

Back to Contents

 

 

3. Summary of test results

 

 

Jump back to the beginning of simulation section

 

Test of the model: titration of  R with L

Full model, then truncated model

some values

flip Kb constants

 

 

 

 

Model: U-2R
Total_R=0.001
Ka=1000000.0,   Kd=0.000001
Kb*=2
Kb**=3
Kc*-**=3/2
MuPAD graphics

Model: U-2R
Total_R=0.001
Ka=1000000.0,   Kd=0.000001
Kb*=3
Kb**=2
Kc*-**=2/3
MuPAD graphics

 

 

Reduce to U

Reduce to U-R (use R*)

Reduce to U-R (use R**)

 

Model: U-2R
Total_R=0.001
Ka=1000000.0,   Kd=0.000001
Kb*=0.000001
Kb**=0.000001
Kc*-**=1.0
MuPAD graphics

Model: U-2R
Total_R=0.001
Ka=1000000.0,   Kd=0.000001
Kb*=3
Kb**=0
Kc*-**=0
MuPAD graphics

Model: U-2R
Total_R=0.001
Ka=1000000.0,   Kd=0.000001
Kb*=0.000001
Kb**=3
Kc*-**=3000000.0
MuPAD graphics

 

 

 

 

Back to Contents

 

 

 

 

Conclusion:

 

The model works as expected