5U-R-RL
Generalized model with one binding-incompetent conformation of R (for example, closed) and many binding-competent (for example, open) leading to one nal bound (closed) conformation of R
2. Basic equilibrium equations
3. Derivation of equations for equilibrium concentrations
4. Prepare equations for a numeric solution
5. Save results on disk for future use
In this document, I am developing equilibrium thermodynamic equations to calculate concentrations of species at all points in titrations
clean up workspace
reset()
Set path to save results into:
ProjectName:="5U-R-RL";
CurrentPath:="/Users/kovrigin_laptop/Documents/Workspace/Global_Analysis/IDAP/Mathematical_models/Equilibrium_thermodynamic_models/U-multi-path-models/nU/5U-R-RL";
Binding constants
All binding constants I am using are association constants.
These relationships serve as restraints for solve(), but not restrict these values in calculations!
To denote "primed" species, I will use p_1 for ', p_2 for '', etc.
K_A'
K_A_p_1 ;
assumeAlso(K_A_p_1 > 0):
assumeAlso(K_A_p_1 , R_)
K_A''
K_A_p_2 ;
assumeAlso(K_A_p_2 > 0):
assumeAlso(K_A_p_2 , R_)
K_A'''
K_A_p_3 ;
assumeAlso(K_A_p_3 > 0):
assumeAlso(K_A_p_3 , R_)
K_A''''
K_A_p_4 ;
assumeAlso(K_A_p_4 > 0):
assumeAlso(K_A_p_4 , R_)
K_A'''''
K_A_p_5 ;
assumeAlso(K_A_p_5 > 0):
assumeAlso(K_A_p_5 , R_)
Formation of binding-competent isomers
K_B_1_p_1
K_B_1_p_1 ;
assumeAlso(K_B_1_p_1 > 0):
assumeAlso(K_B_1_p_1 , R_):
K_B_1_p_2
K_B_1_p_2 ;
assumeAlso(K_B_1_p_2 > 0):
assumeAlso(K_B_1_p_2 , R_):
K_B_1_p_3
K_B_1_p_3 ;
assumeAlso(K_B_1_p_3 > 0):
assumeAlso(K_B_1_p_3 , R_):
K_B_1_p_4
K_B_1_p_4 ;
assumeAlso(K_B_1_p_4 > 0):
assumeAlso(K_B_1_p_4 , R_):
K_B_1_p_5
K_B_1_p_5 ;
assumeAlso(K_B_1_p_5 > 0):
assumeAlso(K_B_1_p_5 , R_):
Induced-fit step (only one independent constant)
K_B_2_p_1
K_B_2_p_1 ;
assumeAlso(K_B_2_p_1 > 0):
assumeAlso(K_B_2_p_1 , R_):
Total concentrations
Rtot - total concentration of the receptor
Rtot;
assumeAlso(Rtot>0):
assumeAlso(Rtot,R_):
Ltot - total concentration of the ligand
Ltot;
assumeAlso(Ltot>0):
assumeAlso(Ltot,R_):
Equilibrium concentrations
R_seq - equilibrium concentration of the binding-INcompetent receptor form
R_seq;
assumeAlso(R_seq>0):
assumeAlso(R_seq<=Rtot):
assumeAlso(R_seq,R_):
Equilibrium concentrations of the binding competent receptor isomers Rn*
R_p_1eq
R_p_1eq;
assumeAlso(R_p_1eq>0):
assumeAlso(R_p_1eq<=Rtot):
assumeAlso(R_p_1eq,R_):
R_p_2eq
R_p_2eq;
assumeAlso(R_p_2eq>0):
assumeAlso(R_p_2eq<=Rtot):
assumeAlso(R_p_2eq,R_):
R_p_3eq
R_p_3eq;
assumeAlso(R_p_3eq>0):
assumeAlso(R_p_3eq<=Rtot):
assumeAlso(R_p_3eq,R_):
R_p_4eq
R_p_4eq;
assumeAlso(R_p_4eq>0):
assumeAlso(R_p_4eq<=Rtot):
assumeAlso(R_p_4eq,R_):
R_p_5eq
R_p_5eq;
assumeAlso(R_p_5eq>0):
assumeAlso(R_p_5eq<=Rtot):
assumeAlso(R_p_5eq,R_):
Equilibrium concentrations of the bound receptor isomers Rn'L
R_p_1Leq
R_p_1Leq;
assumeAlso(R_p_1Leq>0):
assumeAlso(R_p_1Leq<Rtot):
assumeAlso(R_p_1Leq<Ltot):
assumeAlso(R_p_1Leq,R_):
R_p_2Leq
R_p_2Leq;
assumeAlso(R_p_2Leq>0):
assumeAlso(R_p_2Leq<Rtot):
assumeAlso(R_p_2Leq<Ltot):
assumeAlso(R_p_2Leq,R_):
R_p_3Leq
R_p_3Leq;
assumeAlso(R_p_3Leq>0):
assumeAlso(R_p_3Leq<Rtot):
assumeAlso(R_p_3Leq<Ltot):
assumeAlso(R_p_3Leq,R_):
R_p_4Leq
R_p_4Leq;
assumeAlso(R_p_4Leq>0):
assumeAlso(R_p_4Leq<Rtot):
assumeAlso(R_p_4Leq<Ltot):
assumeAlso(R_p_4Leq,R_):
R_p_5Leq
R_p_5Leq;
assumeAlso(R_p_5Leq>0):
assumeAlso(R_p_5Leq<Rtot):
assumeAlso(R_p_5Leq<Ltot):
assumeAlso(R_p_5Leq,R_):
Equilibrium concentrations of other species
Leq - equilibrium concentration of a free ligand
Leq;
assumeAlso(Leq>0):
assumeAlso(Leq<Ltot):
assumeAlso(Leq,R_):
R_sLeq - equilibrium concentration of the final receptor-ligand complex, R*L
R_sLeq;
assumeAlso(R_sLeq>0):
assumeAlso(R_sLeq<Rtot):
assumeAlso(R_sLeq<Ltot):
assumeAlso(R_sLeq,R_):
Check what we defined
anames(Properties,User);
2. Basic equilibrium equations
Mass conservation equations
eq2_1:= Rtot = R_seq + \
R_p_1eq + R_p_2eq + R_p_3eq + R_p_4eq + R_p_5eq + \
R_p_1Leq + R_p_2Leq + R_p_3Leq + R_p_4Leq + R_p_5Leq + \
R_sLeq;
eq2_2:= Ltot = Leq + R_p_1Leq + R_p_2Leq + R_p_3Leq + R_p_4Leq + R_p_5Leq + R_sLeq;
Equilibrium constants for formation of binding-competent isomers
HINT: When increasing number of species: do not increase equation number, add a, b, c, ... modifier instead because then you do NOT need to modify equation numbers in most of the following derivation!
eq2_3_1:= K_B_1_p_1 = R_p_1eq/R_seq
eq2_3_2:= K_B_1_p_2 = R_p_2eq/R_seq
eq2_3_3:= K_B_1_p_3 = R_p_3eq/R_seq
eq2_3_4:= K_B_1_p_4 = R_p_4eq/R_seq
eq2_3_5:= K_B_1_p_5 = R_p_5eq/R_seq
Equilibrium association constants
eq2_4_1:= K_A_p_1 = R_p_1Leq/(R_p_1eq*Leq)
eq2_4_2:= K_A_p_2 = R_p_2Leq/(R_p_2eq*Leq)
eq2_4_3:= K_A_p_3 = R_p_3Leq/(R_p_3eq*Leq)
eq2_4_4:= K_A_p_4 = R_p_4Leq/(R_p_4eq*Leq)
eq2_4_5:= K_A_p_5 = R_p_5Leq/(R_p_5eq*Leq)
Independent equilibrium constant for the induced fit step
eq2_5:= K_B_2_p_1 = R_sLeq/R_p_1Leq
3. Derivation of equations for equilibrium concentrations
Express Leq as a function of all constants and total concentrations. If insoluble ---express Rtot=f(Leq and all constants).
I will express concentrations in the following order:
- R*L <- R'L <- R' <- R*
- Rn'L<- Rn' <- R*
- Then I express R* out of Ltot equation and substitute to Rtot equation
- Last, I will express L from Rtot equation
Mass conservation laws will keep the equation number and will be with incremented with a letter as I proceed with substitutions
eq3_0a:= eq2_1
eq3_1a:= eq2_2
Section 3.2: Express R*L
R*L
eq2_5;
solve(%,R_sLeq):
%[1][1]:
eq3_2:= R_sLeq=%
Substitute into the mass conservation laws:
eq3_0a;
% | eq3_2:
eq3_0b:= %
eq3_1a;
% | eq3_2:
eq3_1b:= %
Section 3.3: Express Rn'L species
NOTE: For better system of numbering mass conservation law equations see Section 3.4
R'L
eq2_4_1;
solve(%,R_p_1Leq):
%[1][1]:
eq3_3_1:= R_p_1Leq=%
Substitute into the mass conservation laws:
eq3_0b;
% | eq3_3_1:
eq3_0c:= %
eq3_1b;
% | eq3_3_1:
eq3_1c:= %
R''L
eq2_4_2;
solve(%,R_p_2Leq):
%[1][1]:
eq3_3_2:= R_p_2Leq=%
Substitute into the mass conservation laws:
eq3_0c;
% | eq3_3_2:
eq3_0d:= %
eq3_1c;
% | eq3_3_2:
eq3_1d:= %
R'''L
eq2_4_3;
solve(%,R_p_3Leq):
%[1][1]:
eq3_3_3:= R_p_3Leq=%
Substitute into the mass conservation laws:
eq3_0d;
% | eq3_3_3:
eq3_0e:= %
eq3_1d;
% | eq3_3_3:
eq3_1e:= %
R''''L
eq2_4_4;
solve(%,R_p_4Leq):
%[1][1]:
eq3_3_4:= R_p_4Leq=%
Substitute into the mass conservation laws:
eq3_0e;
% | eq3_3_4:
eq3_0f:= %
eq3_1e;
% | eq3_3_4:
eq3_1f:= %
R'''''L
eq2_4_5;
solve(%,R_p_5Leq):
%[1][1]:
eq3_3_5:= R_p_5Leq=%
Substitute into the mass conservation laws:
eq3_0f;
% | eq3_3_5:
eq3_0g:= %
eq3_1f;
% | eq3_3_5:
eq3_1g:= %
Section 3.4: Express R'n
Mass conservation laws in this section (I AM SWITCHING HERE TO A MORE FLEXIBLE NUMBERING OF EQUATIONS):
eq3_4_R_a:=eq3_0g;
eq3_4_L_a:=eq3_1g;
R'
eq2_3_1;
solve(%,R_p_1eq):
%[2][1]:
eq3_4_1:= R_p_1eq=%
Substitute into the mass conservation laws:
eq3_4_R_a;
% | eq3_4_1:
eq3_4_R_b:= %
eq3_4_L_a;
% | eq3_4_1:
eq3_4_L_b:= %
R''
eq2_3_2;
solve(%,R_p_2eq):
%[2][1]:
eq3_4_2:= R_p_2eq=%
Substitute into the mass conservation laws:
eq3_4_R_b;
% | eq3_4_2:
eq3_4_R_c:= %
eq3_4_L_b;
% | eq3_4_2:
eq3_4_L_c:= %
R'''
eq2_3_3;
solve(%,R_p_3eq):
%[2][1]:
eq3_4_3:= R_p_3eq=%
Substitute into the mass conservation laws:
eq3_4_R_c;
% | eq3_4_3:
eq3_4_R_d:= %
eq3_4_L_c;
% | eq3_4_3:
eq3_4_L_d:= %
R''''
eq2_3_4;
solve(%,R_p_4eq):
%[2][1]:
eq3_4_4:= R_p_4eq=%
Substitute into the mass conservation laws:
eq3_4_R_d;
% | eq3_4_4:
eq3_4_R_e:= %
eq3_4_L_d;
% | eq3_4_4:
eq3_4_L_e:= %
R'''''
eq2_3_5;
solve(%,R_p_5eq):
%[2][1]:
eq3_4_5:= R_p_5eq=%
Substitute into the mass conservation laws:
eq3_4_R_e;
% | eq3_4_5:
eq3_4_R_f:= %
eq3_4_L_e;
% | eq3_4_5:
eq3_4_L_f:= %
Section 3.5: Final expressions
Aim to obtain Rtot=f(Leq, constants) function
Mass conservation laws here:
eq3_5_R:=eq3_4_R_f;
eq3_5_L:=eq3_4_L_f
express R_seq from conservation law for ligand (Ltot=...)
eq3_5_L;
solve(%,R_seq):
%[1][1]:
eq3_5_1:= R_seq = %
substitute in the conservation law for receptor: (Rtot=...)
eq3_5_R;
% | eq3_5_1;
temp1:=%[2];
temp2:=Simplify(%);
// test
temp1=temp2;
Simplify(%);
// Assemble a final equation
eq3_5_2:= Rtot =temp2
Attempt to solve for Leq
Leq_solutions:=solve(eq3_5_2, Leq)
Extract solutions:
solution_lines:=4:
eq3_5_3:= Leq_solutions[i,1] $ i=1..solution_lines;
nops(%)
Extract unique solutions
solution1:=eq3_5_3[2][1];
solution2:=eq3_5_3[3][1] ;
If having a sequence of roots: Is 1st solution a combination of 2nd and 3rd?
/*
solutionA:=eq3_13[1]; // a sequence of roots
if solution2 in solutionA
then print(Unquoted,"First set of roots contains the second root.");
else print(Unquoted,"First set of roots DOES NOT contain the second root!");
end_if;
if solution3 in solutionA
then print(Unquoted,"First set of roots contains the third root.");
else print(Unquoted,"First set of roots DOES NOT contain the third root!");
end_if;
*/
Section 3.6: Analysis of solutions
Check correctness of the solution by substitution
eq3_5_2;
// Check the 1st solution
test1:=eq3_5_2 | Leq=solution1;
normal(%);
Simplify(%);
bool(%)
works!
eq3_5_2;
// Check the 2nd solution
test1:=eq3_5_2 | Leq=solution2;
normal(%);
Simplify(%);
bool(%)
correct!
Test which solution is meaningful numerically
solution1;
% | K_B_1_p_1=1 | K_B_1_p_2=1 | K_B_1_p_3=1 | K_B_1_p_4=1 | K_B_1_p_5=1 | \
K_A_p_1=1 | K_A_p_2=1 | K_A_p_3=1 | K_A_p_4=1 | K_A_p_5=1 | \
K_B_2_p_1=1 | Rtot=1 | Ltot=1;
float(%)
meaningless
solution2;
% | K_B_1_p_1=1 | K_B_1_p_2=1 | K_B_1_p_3=1 | K_B_1_p_4=1 | K_B_1_p_5=1 | \
K_A_p_1=1 | K_A_p_2=1 | K_A_p_3=1 | K_A_p_4=1 | K_A_p_5=1 | \
K_B_2_p_1=1 | Rtot=1 | Ltot=1;
float(%)
meaningful
Re-check meaningful solution by substitution and calculation:
test1:=eq3_5_2 | Leq=solution2;
result:= \
% | K_B_1_p_1=1 | K_B_1_p_2=1 | K_B_1_p_3=1 | K_B_1_p_4=1 | K_B_1_p_5=1 | \
K_A_p_1=1 | K_A_p_2=1 | K_A_p_3=1 | K_A_p_4=1 | K_A_p_5=1 | \
K_B_2_p_1=1 | Rtot=1 | Ltot=1;
Simplify(result);
float(result);
correct solution!!!
Choose as a final solution
eq3_6_2:= Leq = solution2
Summary of equations for all species
Show species names
anames(Properties,User);
Name equations to recognize them in a different context
Leq_5U_R_RL:=eq3_6_2
R_seq_5U_R_RL:= eq3_5_1
R_p_1eq_5U_R_RL:= eq3_4_1
R_p_2eq_5U_R_RL:= eq3_4_2
R_p_3eq_5U_R_RL:= eq3_4_3
R_p_4eq_5U_R_RL:= eq3_4_4
R_p_5eq_5U_R_RL:= eq3_4_5
R_p_1Leq_5U_R_RL:= eq3_3_1
R_p_2Leq_5U_R_RL:= eq3_3_2
R_p_3Leq_5U_R_RL:= eq3_3_3
R_p_4Leq_5U_R_RL:= eq3_3_4
R_p_5Leq_5U_R_RL:= eq3_3_5
R_sLeq_5U_R_RL:= eq3_2
Create functions for computing concentrations
Here I only check that the results are numerically meaningful--functions were created right. Scientific meaningfulness will be analyzed in a separate notebook 'Analysis'.
(use --> to force direct substitution):
fLeq_5U_R_RL:= (Rtot, Ltot, K_B_1_p_1, K_B_1_p_2, K_B_1_p_3, K_B_1_p_4, K_B_1_p_5, \
K_A_p_1, K_A_p_2, K_A_p_3, K_A_p_4, K_A_p_5, \
K_B_2_p_1) --> Leq_5U_R_RL[2]
//test operation
fLeq_5U_R_RL(1,1,1,1,1,1,1,1,1,1,1,1,1):
float(%)
=> OK
fR_seq_5U_R_RL:= (Rtot, Ltot, K_B_1_p_1, K_B_1_p_2, K_B_1_p_3, K_B_1_p_4, K_B_1_p_5, \
K_A_p_1, K_A_p_2, K_A_p_3, K_A_p_4, K_A_p_5, \
K_B_2_p_1) --> R_seq_5U_R_RL[2] | Leq_5U_R_RL
//test operation
fR_seq_5U_R_RL(1,1,1,1,1,1,1,1,1,1,1,1,1):
float(%)
=> OK
fR_p_1eq_5U_R_RL:=(Rtot, Ltot, K_B_1_p_1, K_B_1_p_2, K_B_1_p_3, K_B_1_p_4, K_B_1_p_5, \
K_A_p_1, K_A_p_2, K_A_p_3, K_A_p_4, K_A_p_5, \
K_B_2_p_1) --> R_p_1eq_5U_R_RL[2] | R_seq_5U_R_RL | Leq_5U_R_RL
//test operation
fR_p_1eq_5U_R_RL(1,1,1,1,1,1,1,1,1,1,1,1,1):
float(%)
=> OK
fR_p_2eq_5U_R_RL:=(Rtot, Ltot, K_B_1_p_1, K_B_1_p_2, K_B_1_p_3, K_B_1_p_4, K_B_1_p_5, \
K_A_p_1, K_A_p_2, K_A_p_3, K_A_p_4, K_A_p_5, \
K_B_2_p_1) --> R_p_2eq_5U_R_RL[2] | R_seq_5U_R_RL | Leq_5U_R_RL;
//test operation
fR_p_2eq_5U_R_RL(1,1,1,1,1,1,1,1,1,1,1,1,1):
float(%)
ok
fR_p_3eq_5U_R_RL:=(Rtot, Ltot, K_B_1_p_1, K_B_1_p_2, K_B_1_p_3, K_B_1_p_4, K_B_1_p_5, \
K_A_p_1, K_A_p_2, K_A_p_3, K_A_p_4, K_A_p_5, \
K_B_2_p_1) --> R_p_3eq_5U_R_RL[2] | R_seq_5U_R_RL | Leq_5U_R_RL;
//test operation
fR_p_3eq_5U_R_RL(1,1,1,1,1,1,1,1,1,1,1,1,1):
float(%)
OK
fR_p_4eq_5U_R_RL:=(Rtot, Ltot, K_B_1_p_1, K_B_1_p_2, K_B_1_p_3, K_B_1_p_4, K_B_1_p_5, \
K_A_p_1, K_A_p_2, K_A_p_3, K_A_p_4, K_A_p_5, \
K_B_2_p_1) --> R_p_4eq_5U_R_RL[2] | R_seq_5U_R_RL | Leq_5U_R_RL;
//test operation
fR_p_4eq_5U_R_RL(1,1,1,1,1,1,1,1,1,1,1,1,1):
float(%)
OK
fR_p_5eq_5U_R_RL:=(Rtot, Ltot, K_B_1_p_1, K_B_1_p_2, K_B_1_p_3, K_B_1_p_4, K_B_1_p_5, \
K_A_p_1, K_A_p_2, K_A_p_3, K_A_p_4, K_A_p_5, \
K_B_2_p_1) --> R_p_5eq_5U_R_RL[2] | R_seq_5U_R_RL | Leq_5U_R_RL;
//test operation
fR_p_5eq_5U_R_RL(1,1,1,1,1,1,1,1,1,1,1,1,1):
float(%)
OK
fR_p_1Leq_5U_R_RL:=(Rtot, Ltot, K_B_1_p_1, K_B_1_p_2, K_B_1_p_3, K_B_1_p_4, K_B_1_p_5, \
K_A_p_1, K_A_p_2, K_A_p_3, K_A_p_4, K_A_p_5, \
K_B_2_p_1) --> R_p_1Leq_5U_R_RL[2] | R_p_1eq_5U_R_RL | R_seq_5U_R_RL | Leq_5U_R_RL;
//test operation
fR_p_1Leq_5U_R_RL(1,1,1,1,1,1,1,1,1,1,1,1,1):
float(%)
OK
fR_p_2Leq_5U_R_RL:=(Rtot, Ltot, K_B_1_p_1, K_B_1_p_2, K_B_1_p_3, K_B_1_p_4, K_B_1_p_5, \
K_A_p_1, K_A_p_2, K_A_p_3, K_A_p_4, K_A_p_5, \
K_B_2_p_1) --> R_p_2Leq_5U_R_RL[2] | R_p_2eq_5U_R_RL | R_seq_5U_R_RL | Leq_5U_R_RL;
//test operation
fR_p_2Leq_5U_R_RL(1,1,1,1,1,1,1,1,1,1,1,1,1):
float(%)
OK
fR_p_3Leq_5U_R_RL:=(Rtot, Ltot, K_B_1_p_1, K_B_1_p_2, K_B_1_p_3, K_B_1_p_4, K_B_1_p_5, \
K_A_p_1, K_A_p_2, K_A_p_3, K_A_p_4, K_A_p_5, \
K_B_2_p_1) --> R_p_3Leq_5U_R_RL[2] | R_p_3eq_5U_R_RL | R_seq_5U_R_RL | Leq_5U_R_RL;
//test operation
fR_p_3Leq_5U_R_RL(1,1,1,1,1,1,1,1,1,1,1,1,1):
float(%)
OK
fR_p_4Leq_5U_R_RL:=(Rtot, Ltot, K_B_1_p_1, K_B_1_p_2, K_B_1_p_3, K_B_1_p_4, K_B_1_p_5, \
K_A_p_1, K_A_p_2, K_A_p_3, K_A_p_4, K_A_p_5, \
K_B_2_p_1) --> R_p_4Leq_5U_R_RL[2] | R_p_4eq_5U_R_RL | R_seq_5U_R_RL | Leq_5U_R_RL;
//test operation
fR_p_4Leq_5U_R_RL(1,1,1,1,1,1,1,1,1,1,1,1,1):
float(%)
OK
fR_p_5Leq_5U_R_RL:=(Rtot, Ltot, K_B_1_p_1, K_B_1_p_2, K_B_1_p_3, K_B_1_p_4, K_B_1_p_5, \
K_A_p_1, K_A_p_2, K_A_p_3, K_A_p_4, K_A_p_5, \
K_B_2_p_1) --> R_p_5Leq_5U_R_RL[2] | R_p_5eq_5U_R_RL | R_seq_5U_R_RL | Leq_5U_R_RL;
//test operation
fR_p_5Leq_5U_R_RL(1,1,1,1,1,1,1,1,1,1,1,1,1):
float(%)
OK
fR_sLeq_5U_R_RL:=(Rtot, Ltot, K_B_1_p_1, K_B_1_p_2, K_B_1_p_3, K_B_1_p_4, K_B_1_p_5, \
K_A_p_1, K_A_p_2, K_A_p_3, K_A_p_4, K_A_p_5, \
K_B_2_p_1) --> R_sLeq_5U_R_RL[2] | R_p_1Leq_5U_R_RL | R_p_1eq_5U_R_RL | R_seq_5U_R_RL | Leq_5U_R_RL;
//test operation
fR_sLeq_5U_R_RL(1,1,1,1,1,1,1,1,1,1,1,1,1):
float(%)
OK
Check conservation laws (make sure the Rtot and Ltot are set to 1) :
Total R
fR_sLeq_5U_R_RL(1,1,1,1,1,1,1,1,1,1,1,1,1) +\
fR_p_1Leq_5U_R_RL(1,1,1,1,1,1,1,1,1,1,1,1,1)+ fR_p_2Leq_5U_R_RL(1,1,1,1,1,1,1,1,1,1,1,1,1)+ fR_p_3Leq_5U_R_RL(1,1,1,1,1,1,1,1,1,1,1,1,1)+ fR_p_4Leq_5U_R_RL(1,1,1,1,1,1,1,1,1,1,1,1,1)+ fR_p_5Leq_5U_R_RL(1,1,1,1,1,1,1,1,1,1,1,1,1)+ \
fR_p_1eq_5U_R_RL(1,1,1,1,1,1,1,1,1,1,1,1,1)+ fR_p_2eq_5U_R_RL(1,1,1,1,1,1,1,1,1,1,1,1,1)+ fR_p_3eq_5U_R_RL(1,1,1,1,1,1,1,1,1,1,1,1,1)+ fR_p_4eq_5U_R_RL(1,1,1,1,1,1,1,1,1,1,1,1,1)+ fR_p_5eq_5U_R_RL(1,1,1,1,1,1,1,1,1,1,1,1,1)+ \
fR_seq_5U_R_RL(1,1,1,1,1,1,1,1,1,1,1,1,1);
float(%)
good
Total L
fR_sLeq_5U_R_RL(1,1,1,1,1,1,1,1,1,1,1,1,1) +\
fR_p_1Leq_5U_R_RL(1,1,1,1,1,1,1,1,1,1,1,1,1)+ fR_p_2Leq_5U_R_RL(1,1,1,1,1,1,1,1,1,1,1,1,1)+ fR_p_3Leq_5U_R_RL(1,1,1,1,1,1,1,1,1,1,1,1,1)+ fR_p_4Leq_5U_R_RL(1,1,1,1,1,1,1,1,1,1,1,1,1)+ fR_p_5Leq_5U_R_RL(1,1,1,1,1,1,1,1,1,1,1,1,1)+ \
fLeq_5U_R_RL(1,1,1,1,1,1,1,1,1,1,1,1,1);
float(%)
good!
(you can retrieve them later by executing: fread(filename,Quiet))
ProjectName
filename:=CurrentPath."/".ProjectName.".mb";
write(filename,
// Equations
Leq_5U_R_RL,
R_seq_5U_R_RL,
R_p_1eq_5U_R_RL,
R_p_2eq_5U_R_RL,
R_p_3eq_5U_R_RL,
R_p_4eq_5U_R_RL,
R_p_5eq_5U_R_RL,
R_p_1Leq_5U_R_RL,
R_p_2Leq_5U_R_RL,
R_p_3Leq_5U_R_RL,
R_p_4Leq_5U_R_RL,
R_p_5Leq_5U_R_RL,
R_sLeq_5U_R_RL,
// Analytical functions
fLeq_5U_R_RL,
fR_seq_5U_R_RL,
fR_p_1eq_5U_R_RL,
fR_p_2eq_5U_R_RL,
fR_p_3eq_5U_R_RL,
fR_p_4eq_5U_R_RL,
fR_p_5eq_5U_R_RL,
fR_p_1Leq_5U_R_RL,
fR_p_2Leq_5U_R_RL,
fR_p_3Leq_5U_R_RL,
fR_p_4Leq_5U_R_RL,
fR_p_5Leq_5U_R_RL,
fR_sLeq_5U_R_RL
)
Conclusions
1. Analytical solution obtained.
2. Functions for analysis of behavior of solutions are created and saved.