EKM 31

Analysis of the thermodynamic equilibrium relationships for a ligand binding to two different receptors

 

U__U model

 

imageimage

images from /Users/kovrigin/Documents/Workspace/Data/Data.XVIII/EKM31.CON58.Ion_Titrations/1.MuPad_derivations/U__U_model.pdf

 

 

 

 

 

Contents

 

Goals

 

1. Load equations

 

2. Simulation

 

3. Summary of test results

 

 

 

Conclusions

 

 

 

 

 

 

 

 

 

 

 

Back to Contents

 

Goals

 

Here I will analyze numeric solutions I derived in U__U_derivation.mn for equilibrium between two different receptors competing for the same ligand.

 

 

 

 

Back to Contents

 

 

1. Load equations

 

Clean up

reset()

 

Path to previous results

ProjectName:="U__U";
CurrentPath:="/Users/kovrigin/Documents/Workspace/Data/Data.XVIII/EKM31.CON58.Ion_Titrations/1.MuPad_derivations/"

"U__U"
"/Users/kovrigin/Documents/Workspace/Data/Data.XVIII/EKM31.CON58.Ion_Titrations/1.MuPad_derivations/"

 

 

Read results of derivations

filename:=CurrentPath.ProjectName.".mb";
fread(filename,Quiet):
anames(User)

"/Users/kovrigin/Documents/Workspace/Data/Data.XVIII/EKM31.CON58.Ion_Titrations/1.MuPad_derivations/U__U.mb"
{CurrentPath, PLeq_U_U, Peq_U_U, ProjectName, RLeq_U_U, Req_U_U, Rtot_U_U, fRtot_U_U, filename, pnLeq_U_U, pnPeq_U_U, pnPLeq_U_U, pnReq_U_U, pnRLeq_U_U}

 

 

Assume some values for testing operation

Total_P:=1e-3:
Total_L:=10e-3:
Eq_L:=9e-3:
Ka1:=1e3:
Ka2:=2e4:
Total_R:=0.000006138735421:

test operation of all procedures

pnLeq_U_U(Total_R, Total_P, Total_L, Ka1, Ka2);
pnReq_U_U(Total_R, Total_P, Total_L, Ka1, Ka2);
pnPeq_U_U(Total_R, Total_P, Total_L, Ka1, Ka2);
pnRLeq_U_U(Total_R, Total_P, Total_L, Ka1, Ka2);
pnPLeq_U_U(Total_R, Total_P, Total_L, Ka1, Ka2);

0.009
0.0000006138735421
0.000005524861878
0.000005524861879
0.0009944751381

=> OK

 

 

Make wrapper functions for plotting

fnLeq:=Total_L -> pnLeq_U_U(Total_R, Total_P, Total_L, Ka1, Ka2):
fnReq:=Total_L -> pnReq_U_U(Total_R, Total_P, Total_L, Ka1, Ka2):
fnPeq:=Total_L -> pnPeq_U_U(Total_R, Total_P, Total_L, Ka1, Ka2):
fnRLeq:=Total_L -> pnRLeq_U_U(Total_R, Total_P, Total_L, Ka1, Ka2):
fnPLeq:=Total_L -> pnPLeq_U_U(Total_R, Total_P, Total_L, Ka1, Ka2):

 

Test plotting

Total_R:=1e-3:
Total_P:=1e-3:
Total_L_max:=2e-3:
Ka1:=1e3:
Ka2:=1e3:

LineW:=1.5: //line width

// create plots

pLeq:=  plot::Function2d(
          Function=(fnLeq),
          LegendText="[L]",
          Color = RGB::Blue,
          XMin=(0),
          XMax=(Total_L_max),
          XName=(L),
          TitlePositionX=(0),
          LineWidth=LineW):


pRLeq:=  plot::Function2d(
          Function=(fnRLeq),
          LegendText="[RL]",
          Color = RGB::Red,
          XMin=(0),
          XMax=(Total_L_max),
          XName=(L),
          TitlePositionX=(0),
          LineWidth=LineW):


plot(pLeq, pRLeq, LegendVisible=TRUE)

MuPAD graphics

=> OK

 

 

 

Back to Contents

 

 

2. Simulation

 

Assume some constants and evaluate titrations

Total_R:=1e-3:
Total_P:=1e-3:
Ka1:=1e4:
Ka2:=1e4:

Total_L_max:=2e-3: // plotting range

LineW:=1.5: // plot line width


pLeq:=  plot::Function2d(
          Function=(fnLeq),
          LegendText="[L]",
          Color = RGB::Blue,
          XMin=(0),
          XMax=(Total_L_max),
          XName=(L),
          TitlePositionX=(0),
          LineWidth=LineW):



pReq:=  plot::Function2d(
          Function=(fnReq),
          LegendText="[R]",
          Color = RGB::Black,
          XMin=(0),
          XMax=(Total_L_max),
          XName=(L),
          TitlePositionX=(0),
          LineWidth=LineW):


pPeq:=  plot::Function2d(
          Function=(fnPeq),
          LegendText="[P]",
          Color = RGB::Magenta,
          XMin=(0),
          XMax=(Total_L_max),
          XName=(L),
          TitlePositionX=(0),
          LineWidth=LineW):

pRLeq:=  plot::Function2d(
          Function=(fnRLeq),
          LegendText="[RL]",
          Color = RGB::Red,
          XMin=(0),
          XMax=(Total_L_max),
          XName=(L),
          TitlePositionX=(0),
          LineWidth=LineW):



pPLeq:=  plot::Function2d(
          Function=(fnPLeq),
          LegendText="[PL]",
          Color = RGB::Green,
          XMin=(0),
          XMax=(Total_L_max),
          XName=(L),
          TitlePositionX=(0),
          LineWidth=LineW):

// Text report
print(Unquoted,"Model: ".ProjectName);
print(Unquoted,"Total_R=".Total_R);
print(Unquoted,"Total_P=".Total_P);
Kd1:=1/Ka1:
print(Unquoted,"Ka1=".Ka1." 1/M,   Kd1=".Kd1." M");
Kd2:=1/Ka2:
print(Unquoted,"Ka2=".Ka2." 1/M,   Kd2=".Kd2." M");

// plot all together
plot(//pLeq,
pReq, pPeq, pRLeq, pPLeq,
   YAxisTitle="[X]", Header=("Model: ".ProjectName),
   Height=160, Width=100,TicksLabelFont=["Helvetica",12,[0,0,0],Left],
  AxesTitleFont=["Helvetica",14,[0,0,0],Left],
  XGridVisible=TRUE, YGridVisible=TRUE,
  LegendVisible=TRUE, LegendFont=["Helvetica",14,[0,0,0],Left]);


Model: U__U
Total_R=0.001
Total_P=0.001
Ka1=10000.0 1/M,   Kd1=0.0001 M
Ka2=10000.0 1/M,   Kd2=0.0001 M
MuPAD graphics

 

 

Jump back to the beginning of simulation section

 

 

 

 

 

 

Back to Contents

 

 

3. Summary of test results

 

 

Jump back to the beginning of simulation section

 

Test of the model: titration of a mixture of P and R with L

 

R only (P not present)

P only (R not present)

Both P and R present at identical concentrations

Amount of R is reduced two-fold.

Model: U_U
Total_R=0.001
Total_P=0.0
Ka1=20000.0 1/M,   Kd1=0.00005 M
Ka2=10000.0 1/M,   Kd2=0.0001 M
MuPAD graphics

 

Model: U_U
Total_R=0.0
Total_P=0.001
Ka1=20000.0 1/M,   Kd1=0.00005 M
Ka2=10000.0 1/M,   Kd2=0.0001 M
MuPAD graphics

 

Model: U_U
Total_R=0.001
Total_P=0.001
Ka1=20000.0 1/M,   Kd1=0.00005 M
Ka2=10000.0 1/M,   Kd2=0.0001 M
MuPAD graphics

 

Model: U_U
Total_R=0.0005
Total_P=0.001
Ka1=20000.0 1/M,   Kd1=0.00005 M
Ka2=10000.0 1/M,   Kd2=0.0001 M
MuPAD graphics

 

Conclusion:

 

1. Normal saturation curve of RL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusion:

 

1. Normal saturation curve of PL.

 

2. Addinity of P to L is weaker so we have lower saturation.

 

 

 

 

 

 

 

 

 

 

 

 

Conclusion:

 

1. Overall degree of saturation of RL and PL is smaller than when a competitor is not present.

 

2. R is binding to L twice as tight. Therefore, degree of saturation of RL is higher than of PL.

 

3. Ratio between RL and PL is not constant---a consequence of binding reactions being bimolecular and both dependent on concentration of L.

 

Conclusions:

 

1. Total concentration of binding sites for L is reduced---reflected by higher [L].

 

2. Total concentration of PL is increased due to reduced competition---fractional saturation of PL is also increased.

 

3. Fractional saturation of RL is increased at lower concentration of R because of higher ratio of free L to free R

For C(L)=0.0012 ---from 65% at 1 mM R to 80% at 0.5 mM R).

 

 

 

Saturation of R with L at different concentrations of R

 

 

print(Unquoted,"Plot a comparative series for fractional saturation of RL at different total concentrations of R (concentration of P is held constant).");

Total_R1:=1.5e-3:
print(Unquoted,"Total_R1=".Total_R1." M");
Total_R2:=1.0e-3:
print(Unquoted,"Total_R2=".Total_R2." M");
Total_R3:=0.5e-3:
print(Unquoted,"Total_R3=".Total_R3." M");

// Other parameters
Total_P:=1e-3:
Ka1:=1e4:
Ka2:=1e5:
print(Unquoted,"Total_P=".Total_P." M");
Kd1:=1/Ka1:
print(Unquoted,"Ka1=".Ka1." 1/M,   Kd1=".Kd1." M");
Kd2:=1/Ka2:
print(Unquoted,"Ka2=".Ka2." 1/M,   Kd2=".Kd2." M");

// Plot parameters
Total_L_max:=2e-3: // plotting range
LineW:=1.5: // plot line width

print(Unquoted,"Model: ".ProjectName);

// Define normalized functions [RL]/Rtot, [PL]/Ptot and [L]/Ltot
fnRLeqNorm1:=Total_L -> pnRLeq_U_U(Total_R1, Total_P, Total_L, Ka1, Ka2)/Total_R1:
fnRLeqNorm2:=Total_L -> pnRLeq_U_U(Total_R2, Total_P, Total_L, Ka1, Ka2)/Total_R2:
fnRLeqNorm3:=Total_L -> pnRLeq_U_U(Total_R3, Total_P, Total_L, Ka1, Ka2)/Total_R3:



// Generate three plots

pRLeq1:=  plot::Function2d(
          Function=(fnRLeqNorm1),
          LegendText="[RL1]",
          Color = RGB::Red,
          XMin=(0),
          XMax=(Total_L_max),
          XName=(L),
          TitlePositionX=(0),
          LineWidth=LineW):

pRLeq2:=  plot::Function2d(
          Function=(fnRLeqNorm2),
          LegendText="[RL2]",
          Color = RGB::Green,
          XMin=(0),
          XMax=(Total_L_max),
          XName=(L),
          TitlePositionX=(0),
          LineWidth=LineW):

pRLeq3:=  plot::Function2d(
          Function=(fnRLeqNorm3),
          LegendText="[RL3]",
          Color = RGB::Blue,
          XMin=(0),
          XMax=(Total_L_max),
          XName=(L),
          TitlePositionX=(0),
          LineWidth=LineW):




// plot all together
plot(pRLeq1, pRLeq2, pRLeq3,
   YAxisTitle="[X]", Header=("Model: ".ProjectName.", Normalized Y, variable R"),
   Height=160, Width=160,TicksLabelFont=["Helvetica",12,[0,0,0],Left],
  AxesTitleFont=["Helvetica",14,[0,0,0],Left],
  XGridVisible=TRUE, YGridVisible=TRUE,
  LegendVisible=TRUE, LegendFont=["Helvetica",14,[0,0,0],Left],
  ViewingBoxYMax=1);





Plot a comparative series for fractional saturation of RL at different total co\
ncentrations of R (concentration of P is held constant).
Total_R1=0.0015 M
Total_R2=0.001 M
Total_R3=0.0005 M
Total_P=0.001 M
Ka1=10000.0 1/M,   Kd1=0.0001 M
Ka2=100000.0 1/M,   Kd2=0.00001 M
Model: U__U
MuPAD graphics

 

 

Conclusion:  Upon reducing total concentration of R we have higher degree of saturaton of R (and P) with L due to reduction in total amount of binding sites in the solution.

Plot a comparative series for fractional saturation of RL at different total co\
ncentrations of R (concentration of P is held constant).
Total_R1=0.0015 M
Total_R2=0.001 M
Total_R3=0.0005 M
Total_P=0.001 M
Ka1=20000.0 1/M,   Kd1=0.00005 M
Ka2=10000.0 1/M,   Kd2=0.0001 M
Model: U_U
MuPAD graphics

 

Switched affinities

Plot a comparative series for fractional saturation of RL at different total co\
ncentrations of R (concentration of P is held constant).
Total_R1=0.0015 M
Total_R2=0.001 M
Total_R3=0.0005 M
Total_P=0.001 M
Ka1=10000.0 1/M,   Kd1=0.0001 M
Ka2=100000.0 1/M,   Kd2=0.00001 M
Model: U__U
MuPAD graphics

 

 

Back to Contents